5 resultados para fibrinolytic therapy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Mortality and morbidity from acute myocardial infarction (AMI) remain high. Intravenous magnesium started early after the onset of AMI is thought to be a promising adjuvant treatment. Conflicting results from earlier trials and meta-analyses warrant a systematic review of available evidence. OBJECTIVES: To examine the effect of intravenous magnesium versus placebo on early mortality and morbidity. SEARCH STRATEGY: We searched CENTRAL (The Cochrane Library Issue 3, 2006), MEDLINE (January 1966 to June 2006) and EMBASE (January 1980 to June 2006), and the Chinese Biomedical Disk (CBM disk) (January 1978 to June 2006). Some core Chinese medical journals relevant to the cardiovascular field were hand searched from their starting date to the first-half year of 2006. SELECTION CRITERIA: All randomized controlled trials that compared intravenous magnesium with placebo in the presence or absence of fibrinolytic therapy in addition to routine treatment were eligible if they reported mortality and morbidity within 35 days of AMI onset. DATA COLLECTION AND ANALYSIS: Two reviewers independently assessed the trial quality and extracted data using a standard form. Odds ratio (OR) were used to pool the effect if appropriate. Where heterogeneity of effects was found, clinical and methodological sources of this were explored. MAIN RESULTS: For early mortality where there was evidence of heterogeneity, a fixed-effect meta-analysis showed no difference between magnesium and placebo groups (OR 0.99, 95%CI 0.94 to 1.04), while a random-effects meta-analysis showed a significant reduction comparing magnesium with placebo (OR 0.66, 95% CI 0.53 to 0.82). Stratification by timing of treatment (< 6 hrs, 6+ hrs) reduced heterogeneity, and in both fixed-effect and random-effects models no significant effect of magnesium was found. In stratified analyses, early mortality was reduced for patients not treated with thrombolysis (OR=0.73, 95% CI 0.56 to 0.94 by random-effects model) and for those treated with less than 75 mmol of magnesium (OR=0.59, 95% CI 0.49 to 0.70) in the magnesium compared with placebo groups.Meta-analysis for the secondary outcomes where there was no evidence of heterogeneity showed reductions in the odds of ventricular fibrillation (OR=0.88, 95% CI 0.81 to 0.96), but increases in the odds of profound hypotension (OR=1.13, 95% CI 1.09 to 1.19) and bradycardia (OR=1.49, 95% CI 1.26 to 1.77) comparing magnesium with placebo. No difference was observed for heart block (OR=1.05, 95% CI 0.97-1.14). For those outcomes where there was evidence of heterogeneity, meta-analysis with both fixed-effect and random-effects models showed that magnesium could decrease ventricular tachycardia (OR=0.45, 95% CI 0.31 to 0.66 by fixed-effect model; OR=0.40, 95% CI 0.19 to 0.84 by random-effects model) and severe arrhythmia needing treatment or Lown 2-5 (OR=0.72, 95% CI 0.60 to 0.85 by fixed-effect model; OR=0.51, 95% CI 0.33 to 0.79 by random-effects model) compared with placebo. There was no difference on the effect of cardiogenic shock between the two groups. AUTHORS' CONCLUSIONS: Owing to the likelihood of publication bias and marked heterogeneity of treatment effects, it is essential that the findings are interpreted cautiously. From the evidence reviewed here, we consider that: (1) it is unlikely that magnesium is beneficial in reducing mortality both in patients treated early and in patients treated late, and in patients already receiving thrombolytic therapy; (2) it is unlikely that magnesium will reduce mortality when used at high dose (>=75 mmol); (3) magnesium treatment may reduce the incidence of ventricular fibrillation, ventricular tachycardia, severe arrhythmia needing treatment or Lown 2-5, but it may increase the incidence of profound hypotension, bradycardia and flushing; and (4) the areas of uncertainty regarding the effect of magnesium on mortality remain the effect of low dose treatment (< 75 mmol) and in patients not treate...
Resumo:
Aprotinin is widely used in cardiac surgery to reduce postoperative bleeding and the need for blood transfusion. Controversy exists regarding the influence of aprotinin on renal function and its effect on the incidence of perioperative myocardial infarction (MI) and cerebrovascular incidents (CVI). In the present study, we analyzed the incidence of these adverse events in patients who underwent coronary artery bypass grafting (CABG) surgery under full-dose aprotinin and compared the data with those recently reported by Mangano et al [2006]. For 751 consecutive patients undergoing CABG surgery under full-dose aprotinin (>4 million kalikrein-inhibitor units) we analyzed in-hospital data on renal dysfunction or failure, MI (defined as creatine kinase-myocardial band > 60 iU/L), and CVI (defined as persistent or transient neurological symptoms and/or positive computed tomographic scan). Average age was 67.0 +/- 9.9 years, and patient pre- and perioperative characteristics were similar to those in the Society of Thoracic Surgeons database. The mortality (2.8%) and incidence of renal failure (5.2%) ranged within the reported results. The incidence rates of MI (8% versus 16%; P < .01) and CVI (2% versus 6%; P < .01) however, were significantly lower than those reported by Mangano et al. Thus the data of our single center experience do not confirm the recently reported negative effect of full-dose aprotinin on the incidence of MI and CVI. Therefore, aprotinin may still remain a valid option to reduce postoperative bleeding, especially because of the increased use of aggressive fibrinolytic therapy following percutaneous transluminal coronary angioplasty.
Resumo:
BACKGROUND The role of fibrinolytic therapy in patients with intermediate-risk pulmonary embolism is controversial. METHODS In a randomized, double-blind trial, we compared tenecteplase plus heparin with placebo plus heparin in normotensive patients with intermediate-risk pulmonary embolism. Eligible patients had right ventricular dysfunction on echocardiography or computed tomography, as well as myocardial injury as indicated by a positive test for cardiac troponin I or troponin T. The primary outcome was death or hemodynamic decompensation (or collapse) within 7 days after randomization. The main safety outcomes were major extracranial bleeding and ischemic or hemorrhagic stroke within 7 days after randomization. RESULTS Of 1006 patients who underwent randomization, 1005 were included in the intention-to-treat analysis. Death or hemodynamic decompensation occurred in 13 of 506 patients (2.6%) in the tenecteplase group as compared with 28 of 499 (5.6%) in the placebo group (odds ratio, 0.44; 95% confidence interval, 0.23 to 0.87; P=0.02). Between randomization and day 7, a total of 6 patients (1.2%) in the tenecteplase group and 9 (1.8%) in the placebo group died (P=0.42). Extracranial bleeding occurred in 32 patients (6.3%) in the tenecteplase group and 6 patients (1.2%) in the placebo group (P<0.001). Stroke occurred in 12 patients (2.4%) in the tenecteplase group and was hemorrhagic in 10 patients; 1 patient (0.2%) in the placebo group had a stroke, which was hemorrhagic (P=0.003). By day 30, a total of 12 patients (2.4%) in the tenecteplase group and 16 patients (3.2%) in the placebo group had died (P=0.42). CONCLUSIONS In patients with intermediate-risk pulmonary embolism, fibrinolytic therapy prevented hemodynamic decompensation but increased the risk of major hemorrhage and stroke. (Funded by the Programme Hospitalier de Recherche Clinique in France and others; PEITHO EudraCT number, 2006-005328-18; ClinicalTrials.gov number, NCT00639743.).
Resumo:
AIMS To highlight differences between the most recent guidelines of the European Society of Cardiology (ESC) and the American College of Cardiology Foundation/American Heart Association (ACCF/AHA) on the management of ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS ESC 2012 and ACCF/AHA 2013 guidelines on the management of STEMI were systematically reviewed for consistency. Recommendations were matched, directly compared in terms of class of recommendation and level of evidence, and classified as "identical", "overlapping", or "different". Out of 32 recommendations compared, 26 recommendations (81%) were classified as identical or overlapping, and six recommendations (19%) were classified as different. Most diverging recommendations were related to minor differences in class of recommendation between the two documents. This applies to recommendations for reperfusion therapy >12 hours after symptom onset, immediate transfer of all patients after fibrinolytic therapy, rescue PCI for patients with failed fibrinolysis, and intra-aortic balloon pump use in patients with cardiogenic shock. More substantial differences were observed with respect to the type of P2Y12 inhibitor and duration of dual antiplatelet therapy. CONCLUSIONS The majority of recommendations for the management of STEMI according to ESC and ACCF/AHA guidelines were identical or overlapping. Differences were explained by gaps in available evidence, in which case expert consensus differed between European and American guidelines due to divergence in interpretation, perception, and culture of medical practice. Systematic comparisons of European and American guidelines are valuable and indicate that interpretation of available evidence leads to agreement in the vast majority of topics. The latter is indirect support for the process of review and guideline preparation on both sides of the Atlantic.
Resumo:
Pleural infection is a frequent clinical condition. Prompt treatment has been shown to reduce hospital costs, morbidity and mortality. Recent advances in treatment have been variably implemented in clinical practice. This statement reviews the latest developments and concepts to improve clinical management and stimulate further research. The European Association for Cardio-Thoracic Surgery (EACTS) Thoracic Domain and the EACTS Pleural Diseases Working Group established a team of thoracic surgeons to produce a comprehensive review of available scientific evidence with the aim to cover all aspects of surgical practice related to its treatment, in particular focusing on: surgical treatment of empyema in adults; surgical treatment of empyema in children; and surgical treatment of post-pneumonectomy empyema (PPE). In the management of Stage 1 empyema, prompt pleural space chest tube drainage is required. In patients with Stage 2 or 3 empyema who are fit enough to undergo an operative procedure, there is a demonstrated benefit of surgical debridement or decortication [possibly by video-assisted thoracoscopic surgery (VATS)] over tube thoracostomy alone in terms of treatment success and reduction in hospital stay. In children, a primary operative approach is an effective management strategy, associated with a lower mortality rate and a reduction of tube thoracostomy duration, length of antibiotic therapy, reintervention rate and hospital stay. Intrapleural fibrinolytic therapy is a reasonable alternative to primary operative management. Uncomplicated PPE [without bronchopleural fistula (BPF)] can be effectively managed with minimally invasive techniques, including fenestration, pleural space irrigation and VATS debridement. PPE associated with BPF can be effectively managed with individualized open surgical techniques, including direct repair, myoplastic and thoracoplastic techniques. Intrathoracic vacuum-assisted closure may be considered as an adjunct to the standard treatment. The current literature cements the role of VATS in the management of pleural empyema, even if the choice of surgical approach relies on the individual surgeon's preference.