6 resultados para family stability
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In a Chinese myoclonus-dystonia syndrome (MDS) family presented with a phenotype including a typical MDS, cervical dystonia, and writer's cramp, genetic analyses revealed a novel 662 + 1insG heterozygous mutation in exon 5 in the epsilon-sarcoglycan (SGCE) gene, leading to a frameshift with a down stream stop codon. Low SGCE mRNA levels were detected in the mutation carriers by real-time PCR, suggesting that the nonsense mutation might interfere with the stability of SGCE mRNA. This is the first report on Chinese with a SGCE mutation leading to MDS. Our data support the fact that same mutation of SGCE gene can lead to a varied phenotype, even in the same family.
Resumo:
While electromagnetic duality is a symmetry of many supergravity theories, this is not the case for the N = 8 gauged theory. It was recently shown that this rotation leads to a one-parameter family of SO(8) supergravities. It is an open question what the period of this parameter is. This issue is investigated in the SO(4) invariant sectors of the theory. We classify such critical points and find a novel branch of non-supersymmetric and unstable solutions, whose embedding is related via triality to the two known ones. Secondly, we show that the three branches of solutions lead to a π/4 periodicity of the vacuum structure. The general interrelations between triality and periodicity are discussed. Finally, we comment on the connection to other gauge groups as well as the possibility to achieve (non-)perturbative stability around AdS/Mkw/dS transitions.
Resumo:
The goal of the present study is to supplement inter-cultural comparison of values as a cultural dimension by intra-cultural comparisons, and to go beyond comparisons of single values representing cultural dimensions by studying value patterns on the individual level. Therefore, relationships among general (individualism, collectivism) and domain-specific (family- and child-related) values and the transmission of values in three generations of one family were analyzed. The sample consisted of 100 complete triads of three generations (grandmothers, mothers, and adolescents). The results showed that the individual value orientations of these three generations dif- fered in the expected direction. Individualistic values were more supported by the younger and less by the older generation. While individualism did not show significant relations to other specific values, collectivism was the most powerful dimension to predict family and child-related values. Individual- ism and collectivism clearly turned out as separate dimensions with different functions for the individual value system. The value structure of grandmoth- ers as compared to the younger generations showed more internal consistency. A relative transmission of values was obvious for the adjacent generations. The results are discussed from the perspective of cultural change and stability, and the relation among cultural dimensions and individual value orientations.
Resumo:
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.
Resumo:
The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production.
Resumo:
CONTEXT The autosomal dominant form of GH deficiency (IGHD II) is characterized by markedly reduced GH secretion combined with low concentrations of IGF-1 leading to short stature. OBJECTIVE Structure-function analysis of a missense mutation in the GH-1 gene converting codon 76 from leucine (L) to proline (P) yielding a mutant GH-L76P peptide. DESIGN, SETTINGS, AND PATIENTS Heterozygosity for GH-L76P/wt-GH was identified in a nonconsanguineous Spanish family. The index patients, two siblings, a boy and a girl, were referred for assessment of their short stature (-3.2 and -3.8 SD). Their grandmother, father, and aunt were also carrying the same mutation and showed severe short stature; therefore, IGHD II was diagnosed. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-L76P showed a reduced GH secretion (P < .001) after forskolin stimulation when compared with the cells expressing only wt-GH. In silico mutagenesis and molecular dynamics simulations presented alterations of correct folding and mutant stability compared with wt-GH. Therefore, further structural analysis of the GH-L76P mutant was performed using expressed and purified proteins in Escherichia coli by thermofluor assay and fast degradation proteolysis assay. Both assays revealed that the GH-L76P mutant is unstable and misfolded compared to wt-GH confirming the bioinformatic model prediction. CONCLUSIONS This is the first report of a family suffering from short stature caused by IGHD II, which severely affects intracellular GH folding and stability as well as secretion, highlighting the necessity of functional analysis of any GH variant for defining new mechanisms as a cause for IGHD II.