5 resultados para factor-augmented panel regressions
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.
Resumo:
BACKGROUND: Clinical observations are suggesting accelerated granulation tissue formation in traumatic wounds treated with vacuum-assisted closure (VAC). Aim of this study was to determine the impact of VAC therapy versus alternative Epigard application on local inflammation and neovascularization in traumatic soft tissue wounds. METHODS: Thirty-two patients with traumatic wounds requiring temporary coverage (VAC n = 16; Epigard n = 16) were included. At each change of dressing, samples of wound fluid and serum were collected (n = 80). The cytokines interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 were measured by ELISA. Wound biopsies were examined histologically for inflammatory cells and degree of neovascularization present. RESULTS: All cytokines were found to be elevated in wound fluids during both VAC and Epigard treatment, whereas serum concentrations were negligible or not detectable. In wound fluids, significantly higher IL-8 (p < 0.001) and VEGF (p < 0.05) levels were detected during VAC therapy. Furthermore, histologic examination revealed increased neovascularization (p < 0.05) illustrated by CD31 and von Willebrand factor immunohistochemistry in wound biopsies of VAC treatment. In addition, there was an accumulation of neutrophils as well as an augmented expression of VEGF (p < 0.005) in VAC wound biopsies. CONCLUSION: This study suggests that VAC therapy of traumatic wounds leads to increased local IL-8 and VEGF concentrations, which may trigger accumulation of neutrophils and angiogenesis and thus, accelerate neovascularization.
Resumo:
BACKGROUND Low testosterone, acute and chronic stress and hypercoagulation are all associated with hypertension and hypertension-related diseases. The interaction between these factors and future risk for coronary artery disease in Africans has not been fully elucidated. In this study, associations of testosterone, acute cardiovascular and coagulation stress responses with fibrinogen and von Willebrand factor in African and Caucasian men in a South African cohort were investigated. METHODS Cardiovascular variables were studied by means of beat-to-beat and ambulatory blood pressure monitoring. Fasting serum-, salivary testosterone and citrate coagulation markers were obtained from venous blood samples. Acute mental stress responses were evoked with the Stroop test. RESULTS The African group demonstrated a higher cardiovascular risk compared to Caucasian men with elevated blood pressure, low-grade inflammation, chronic hyperglycemia (HbA1c), lower testosterone levels, and elevated von Willebrand factor (VWF) and fibrinogen levels. Blunted testosterone acute mental stress responses were demonstrated in African males. In multiple regression analyses, higher circulating levels of fibrinogen and VWF in Africans were associated with a low T environment (R(2) 0.24-0.28; p≤0.01), but only circulating fibrinogen in Caucasians. Regarding endothelial function, a low testosterone environment and a profile of augmented α-adrenergic acute mental stress responses (diastolic BP, D-dimer and testosterone) were associated with circulating VWF levels in Africans (Adj R(2) 0.24; p<0.05). CONCLUSIONS An interdependence between acute mental stress, salivary testosterone, D-dimer and vascular responses existed in African males in their association with circulating VWF but no interdependence of the independent variables occurred with fibrinogen levels.
Resumo:
We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85% identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Northern blot analysis detected TNFSF10-specific transcripts (approximately 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34-->q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel.