62 resultados para eye movements

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated eye-movements during preschool children’s pictorial recall of seen objects. Thirteen 3- to 4-year-old children completed a perceptual encoding and a pictorial recall task. First, they were exposed to 16 pictorial objects, which were positioned in one of four distinct areas on the computer screen. Subsequently, they had to recall these pictorial objects from memory in order to respond to specific questions about visual details. We found that children spent more time fixating the areas in which the pictorial objects were previously displayed.We conclude that as early as age 3–4 years old, children show specific eye-movements when they recall pictorial contents of previously seen objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When sight-reading a piece of music the eyes constantly scan the score slightly ahead of music execution. This separation between reading and acting is commonly termed eye-hand span and can be expressed in two ways: as anticipation in notes or in time. Previous research, predominantly in piano players, found skill-dependent differences of eye-hand span. To date no study has explored visual anticipation in violinists. The present study investigated how structural properties of a piece of music affect the eye-hand span in a group of violinists. To this end eye movements and bow reversals were recorded synchronously while musicians sight-read a piece of music. The results suggest that structural differences of the score are reflected in the eye-hand span in a way similar to skill level. Specifically, the piece with higher complexity was associated with lower anticipation in notes, longer fixation duration and a tendency for more regressive fixations. Anticipation in time, however, remained the same (approximately 1 s) independently of the score played but was correlated with playing tempo. We conclude that the eye-hand span is not only influenced by the experience of the musician, but also by the structure of the score to be played.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic differences in circadian rhythmicity are thought to be a substantial factor determining inter-individual differences in fatigue and cognitive performance. The synchronicity effect (when time of testing coincides with the respective circadian peak period) seems to play an important role. Eye movements have been shown to be a reliable indicator of fatigue due to sleep deprivation or time spent on cognitive tasks. However, eye movements have not been used so far to investigate the circadian synchronicity effect and the resulting differences in fatigue. The aim of the present study was to assess how different oculomotor parameters in a free visual exploration task are influenced by: a) fatigue due to chronotypical factors (being a 'morning type' or an 'evening type'); b) fatigue due to the time spent on task. Eighteen healthy participants performed a free visual exploration task of naturalistic pictures while their eye movements were recorded. The task was performed twice, once at their optimal and once at their non-optimal time of the day. Moreover, participants rated their subjective fatigue. The non-optimal time of the day triggered a significant and stable increase in the mean visual fixation duration during the free visual exploration task for both chronotypes. The increase in the mean visual fixation duration correlated with the difference in subjectively perceived fatigue at optimal and non-optimal times of the day. Conversely, the mean saccadic speed significantly and progressively decreased throughout the duration of the task, but was not influenced by the optimal or non-optimal time of the day for both chronotypes. The results suggest that different oculomotor parameters are discriminative for fatigue due to different sources. A decrease in saccadic speed seems to reflect fatigue due to time spent on task, whereas an increase in mean fixation duration a lack of synchronicity between chronotype and time of the day.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impairment of cognitive performance during and after high-altitude climbing has been described in numerous studies and has mostly been attributed to cerebral hypoxia and resulting functional and structural cerebral alterations. To investigate the hypothesis that high-altitude climbing leads to cognitive impairment, we used of neuropsychological tests and measurements of eye movement (EM) performance during different stimulus conditions. The study was conducted in 32 mountaineers participating in an expedition to Muztagh Ata (7,546 m). Neuropsychological tests comprised figural fluency, line bisection, letter and number cancellation, and a modified pegboard task. Saccadic performance was evaluated under three stimulus conditions with varying degrees of cortical involvement: visually guided pro- and anti-saccades, and visuo-visual interaction. Typical saccade parameters (latency, mean sequence, post-saccadic stability, and error rate) were computed off-line. Measurements were taken at a baseline level of 440 m and at altitudes of 4,497, 5,533, 6,265, and again at 440 m. All subjects reached 5,533 m, and 28 reached 6,265 m. The neuropsychological test results did not reveal any cognitive impairment. Complete eye movement recordings for all stimulus conditions were obtained in 24 subjects at baseline and at least two altitudes and in 10 subjects at baseline and all altitudes. Measurements of saccade performances showed no dependence on any altitude-related parameter and were well within normal limits. Our data indicates that acclimatized climbers do not seem to suffer from significant cognitive deficits during or after climbs to altitudes above 7,500 m. We demonstrated that investigation of EMs is feasible during high-altitude expeditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated attention, encoding and processing of social aspects of complex photographic scenes. Twenty-four high-functioning adolescents (aged 11–16) with ASD and 24 typically developing matched control participants viewed and then described a series of scenes, each containing a person. Analyses of eye movements and verbal descriptions provided converging evidence that both groups displayed general interest in the person in each scene but the salience of the person was reduced for the ASD participants. Nevertheless, the verbal descriptions revealed that participants with ASD frequently processed the observed person’s emotion or mental state without prompting. They also often mentioned eye-gaze direction, and there was evidence from eye movements and verbal descriptions that gaze was followed accurately. The combination of evidence from eye movements and verbal descriptions provides a rich insight into the way stimuli are processed overall. The merits of using these methods within the same paradigm are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the roles of the right and left dorsolateral prefrontal (rDLPFC, lDLPFC) and the medial frontal cortex (MFC) in executive functioning using a theta burst transcranial magnetic stimulation (TMS) approach. Healthy subjects solved two visual search tasks: a number search task with low cognitive demands, and a number and letter search task with high cognitive demands. To observe how subjects solved the tasks, we assessed their behavior with and without TMS using eye movements when subjects were confronted with specific executive demands. To observe executive functions, we were particularly interested in TMS-induced changes in visual exploration strategies found to be associated with good or bad performance in a control condition without TMS stimulation. TMS left processing time unchanged in both tasks. Inhibition of the rDLPFC resulted in a decrease in anticipatory fixations in the number search task, i.e., a decrease in a good strategy in this low demand task. This was paired with a decrease in stimulus fixations. Together, these results point to a role of the rDLPFC in planning and response selection. Inhibition of the lDLPFC and the MFC resulted in an increase in anticipatory fixations in the number and letter search task, i.e., an increase in the application of a good strategy in this task. We interpret these results as a compensatory strategy to account for TMS-induced deficits in attentional switching when faced with high switching demands. After inhibition of the lDLPFC, an increase in regressive fixations was found in the number and letter search task. In the context of high working memory demands, this strategy appears to support TMS-induced working memory deficits. Combining an experimental TMS approach with the recording of eye movements proved sensitive to discrete decrements of executive functions and allows pinpointing the functional organization of the frontal lobes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large body of research suggests that when we retrieve visual information from memory, we look back to the location where we encoded these objects. It has been proposed that the oculomotor trace we act out during encoding is stored in long-term memory, along other contents of the episodic representation. If memory recall triggers the eyes to revisit the location where the stimulus was encoded, is there also an effect in the reverse direction? Can eye movements trigger memory recall? In Experiment 1 participants encoded two faces at two different locations on the computer screen. Then, the average face (morph) of these two faces appeared in either of the two encoding locations and participants had to indicate whether it resembles more the first or second face. In Experiment 2 the morph appeared in a new location, but participants had to repeat one of the oculomotor traces that was used during encoding. Participants’ morph perception was influenced both by the location and the eye-movement it was presented with. Our results suggest that eye-movements can bias memory recall, but only in a short-lasting and rather fragile way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the “mental number line”), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8–3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New-onset impairment of ocular motility will cause incomitant strabismus, i.e., a gaze-dependent ocular misalignment. This ocular misalignment will cause retinal disparity, that is, a deviation of the spatial position of an image on the retina of both eyes, which is a trigger for a vergence eye movement that results in ocular realignment. If the vergence movement fails, the eyes remain misaligned, resulting in double vision. Adaptive processes to such incomitant vergence stimuli are poorly understood. In this study, we have investigated the physiological oculomotor response of saccadic and vergence eye movements in healthy individuals after shifting gaze from a viewing position without image disparity into a field of view with increased image disparity, thus in conditions mimicking incomitance. Repetitive saccadic eye movements into a visual field with increased stimulus disparity lead to a rapid modification of the oculomotor response: (a) Saccades showed immediate disconjugacy (p < 0.001) resulting in decreased retinal image disparity at the end of a saccade. (b) Vergence kinetics improved over time (p < 0.001). This modified oculomotor response enables a more prompt restoration of ocular alignment in new-onset incomitance.