33 resultados para extreme events

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines how local communities adapt to climate change and how governance structures can foster or undermine adaptive capacity. Climate change policies, in general, and disaster risk management in mountain regions, in particular, are characterised by their multi-level and multi-sectoral nature during formulation and implementation. The involvement of numerous state and non-state actors at local to national levels produces a variety of networks of interaction and communication. The paper argues that the structure of these relational patterns is critical for understanding adaptive capacity. It thus proposes an expanded concept of adaptive capacity that incorporates (horizontal and vertical) actor integration and communication flow between these actors. The paper further advocates the use of formal social network analysis to assess these relational patterns. Preliminary results from research on adaptation to climate change in a Swiss mountain region vulnerable to floods and other natural hazards illustrate the conceptual and empirical significance of the main arguments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 272-ha grove of dominant Microberlinia bisulcata (Caesalpinioideae) adult trees greater than or equal to 50 cm stem diameter was mapped in its entirety in the southern part of Korup National Park, Cameroon. The approach used an earlier-established 82.5-ha permanent plot with a new surrounding 50-m grid of transect lines. Tree diameters were available from the plot but trees on the grid were recorded as being greater than or equal to 50 cm. The grove consisted of 1028 trees in 2000. Other species occurred within the grove. including the associated subdominants Tetraberlinia bifoliolata and T. korupensis. Microberlinia bisulcata becomes adult at a stein diameter of c. 50 cm and at an estimated age of 50 y. Three oval-shaped subgroves with dimensions c. 8 50 in x 13 50 in (90 ha) were defined. For two of them (within the plot) tree diameters were available. Subgroves differed in their scales and intensities of spatial tree patterns, and in their size frequency distributions, these suggesting differing past dynamics. The modal scale of clumping was 40-50 m. Seed dispersal by pod ejection (to c. 50 in) was evident from the semi-circles of trees at the grove's edge and from the many internal circles (100-200 m diameter). The grove has the capacity. therefore, to increase at c. 100 m per century. To form its present extent and structure. it is inferred that it expanded and infilled from a possibly smaller area of lower adult-tree density. This possibly happened in three waves of recruitment, each one determined by a period of several intense disturbances. Climate records for Africa show that 1740-50 and 1820-30 were periods of drought, and that 1870-1895 was also regionally very dry. Canopy openings allow the light-demanding and fast-growing ectomycorrhizal M. bisulcata to establish, but successive releases are thought to be required to achieve effective recruitment. Nevertheless, in the last 50 y there were no major events and recruitment in the grove was very poor. This present study leads to a new hypothesis of the role of periods of multiple extreme events being the driving factor for the population dynamics of many large African tree species such as M. bisulcata.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The floods that occurred on the Aare and Rhine rivers in May 2015 and the mostly successful handling of this event in terms of flood protection measures are a good reminder of how important it is to comprehend the causes and processes involved in such natural hazards. While the needed data series of gauge measurements and peak discharge calculations reach back to the 19th century, historical records dating further back in time can provide additional and useful information to help understanding extreme flood events and to evaluate prevention measures such as river dams and corrections undertaken prior to instrumental measurements. In my PhD project I will use a wide range of historical sources to assess and quantify past extreme flood events. It is part of the SNF-funded project “Reconstruction of the Genesis, Process and Impact of Major Pre-instrumental Flood Events of Major Swiss Rivers Including a Peak Discharge Quantification” and will cover the research locations Fribourg (Saane R.), Burgdorf (Emme R.), Thun, Bern (both Aare R.), and the Lake of Constance at the locations Lindau, Constance and Rorschach. My main goals are to provide a long time series of quantitative data for extreme flood events, to discuss the occurring changes in these data, and to evaluate the impact of the aforementioned human influences on the drainage system. Extracting information given in account books from the towns of Basel and Solothurn may also enable me to assess the frequency and seasonality of less severe river floods. Finally, historical information will be used for remodeling the historical hydrological regime to homogenize the historical data series to modern day conditions and thus make it comparable to the data provided by instrumental measurements. The method I will apply for processing all information provided by historical sources such as chronicles, newspapers, institutional records, as well as flood marks, paintings and archeological evidence has been developed and successfully applied to the site of Basel by Wetter et al. (2011). They have also shown that data homogenization is possible by reconstructing previous stream flow conditions using historical river profiles and by carefully observing and re-constructing human changes of the river bed and its surroundings. Taken all information into account, peak discharges for past extreme flood events will be calculated with a one-dimensional hydrological model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Meteorological or climatological extremes are rare and hence studying them requires long meteorological data sets. Moreover, for addressing the underlying atmospheric processes, detailed three-dimensional data are desired. Until recently the two requirements were incompatible as long meteorological series were only available for a few locations, whereas detailed 3-dimensional data sets such as reanalyses were limited to the past few decades. In 2011, the “Twentieth Century Reanalysis” (20CR) was released, a 6-hourly global atmospheric data set covering the past 140 years, thus combining the two properties. The collection of short papers in this volume contains case studies of individual extreme events in the 20CR data set. In this overview paper we introduce the first six cases and summarise some common findings. All of the events are represented in 20CR in a physically consistent way, allowing further meteorological interpretations and process studies. Also, for most of the events, the magnitudes are underestimated in the ensemble mean. Possible causes are addressed. For interpreting extrema it may be necessary to address individual ensemble members. Also, the density of observations underlying 20CR should be considered. Finally, we point to problems in wind speeds over the Arctic and the northern North Pacific in 20CR prior to the 1950s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The meteorological circumstances that led to the Blizzard of March 1888 that hit New York are analysed in Version 2 of the “Twentieth Century Reanalysis” (20CR). The potential of this data set for studying historical extreme events has not yet been fully explored. A detailed analysis of 20CR data alongside other data sources (including historical instrumental data and weather maps) for historical extremes such as the March 1888 blizzard may give insights into the limitations of 20CR. We find that 20CR reproduces the circulation pattern as well as the temperature development very well. Regarding the absolute values of variables such as snow fall or minimum and maximum surface pressure, there is anunderestimation of the observed extremes, which may be due to the low spatial resolution of 20CR and the fact that only the ensemble mean is considered. Despite this drawback, the dataset allows us to gain new information due to its complete spatial and temporal coverage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysing historical weather extremes such as the tropical cyclone in Samoa in March 1889 could add to our understanding of extreme events. However, up to now the availability of suitable data was limiting the analysis of historical extremes, particularly in remote regions. The new “Twentieth Century Reanalysis” (20CR), which provides six-hourly, three-dimensional data for the entire globe back to 1871, might provide the means to study this and other early events. While its suitability for studying historical extremes has been analysed for events in the northern extratropics (see other papers in this volume), the representation of tropical cyclones, especially in early times, remains unknown. The aim of this paper is to study to the hurricane that struck Samoa on 15-16 March 1889. We analyse the event in 20CR as well as in contemporary observations. We find that the event is not reproduced in the ensemble mean of 20CR, nor is it within the ensemble spread. We argue that this is due to the paucity of data assimilated into 20CR. A preliminary compilation of historical observations from ships for that period, in contrast, provides a relatively consistent picture of the event. This shows that more observations would be available and implies that future versions of surface-based reanalyses might profit from digitizing further observations in the tropical region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change is clearly discernible in observed climate records in Switzerland. It impacts on natural systems, ecosystems, and economic sectors such as agriculture, tourism, and energy, and it affects Swiss livelihood in various ways. The observed and projected changes call for a response from the political system, which in Switzerland is characterized by federalism and direct democratic instruments. Swiss climate science embraces natural and social sciences and builds on institutionalized links between researchers, public, and private stakeholders. In this article, we review the physical, institutional, and political aspects of climate change in Switzerland. We show how the current state of Swiss climate science and policy developed over the past 20 years in the context of international developments and national responses. Specific to Switzerland is its topographic setting with mountain regions and lowlands on both sides of the Alpine ridge, which makes climate change clearly apparent and for some aspects (tourist sector, hydropower, and extreme events) highly relevant and better perceivable (e.g., retreating glaciers). Not surprisingly the Alpine region is of central interest in Swiss climate change studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate models predict more frequent and more severe extreme events (e.g. heat waves, extended drought periods) in Europe during the next decades. The response of plants to elevated temperature is a key issue in this context. Stomatal regulation is not only relevant for the diffusion of CO2 from the ambient air into the leaves, but it plays also an important role for the control of transpiration and leaf cooling. The regulation of stomatal aperture by the water status (hydroactive and hydropassive feed-back) and by internal CO2 availability (CO2 feed-back) are well documented in the literature, while the response of the stomates to elevated temperature was far less considered in the past. Photosynthesis is negatively affected by elevated temperature, but the water loss via transpiration may still be high. In the experiments reported here, bean leaf segments were incubated in darkness floating on water in the range from 20 to 50°C and then analyzed immediately by taking a photograph with a digital microscope. Stomatal aperture was measured on these pictures in order to quantify stomatal opening. After the incubation for 30 min, the opening was 0.66, 2.76 and 4.28 μm at 23, 30 and 35°C respectively. This opening at elevated temperature was fully reversible. Abscisic acid (0.1 μM) in the incubation medium shifted the temperature for stomatal opening to higher values. It can be concluded that elevated temperature stimulates stomatal opening regardless of the CO2 assimilation status and that there is a trade-off between leaf cooling on one hand and limiting water loss during drought periods on the other hand.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Land-atmosphere coupling and its impact on extreme precipitation and temperature events over North America are studied using the fifth generation of the Canadian Regional Climate Model (CRCM5). To this effect, two 30 year long simulations, spanning the 1981–2010 period, with and without land-atmosphere coupling, have been performed with CRCM5, driven by the European Centre for Medium-Range Weather Forecasts reanalysis at the boundaries. In the coupled simulation, the soil moisture interacts freely with the atmosphere at each time step, while in the uncoupled simulation, soil moisture is replaced with its climatological value computed from the coupled simulation, thus suppressing the soil moisture-atmosphere interactions. Analyses of the coupled and uncoupled simulations, for the summer period, show strong soil moisture-temperature coupling over the Great Plains, consistent with previous studies. The maxima of soil moisture-precipitation coupling is more spread out and covers the semiarid regions of the western U.S. and parts of the Great Plains. However, the strength of soil moisture-precipitation coupling is found to be generally weaker than that of soil moisture-temperature coupling. The study clearly indicates that land-atmosphere coupling increases the interannual variability of the seasonal mean daily maximum temperature in the Great Plains. Land-atmosphere coupling is found to significantly modulate selected temperature extremes such as the number of hot days, frequency, and maximum duration of hot spells over the Great Plains. Results also suggest additional hot spots, where soil moisture modulates extreme events. These hot spots are located in the southeast U.S. for the hot days/hot spells and in the semiarid regions of the western U.S. for extreme wet spells. This study thus demonstrates that climatologically wet/dry regions can become hot spots of land-atmosphere coupling when the soil moisture decreases/increases to an intermediate transitional level where evapotranspiration becomes moisture sensitive and large enough to affect the climate.