9 resultados para external flow
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Carotid atherosclerotic disease is highly related to cerebrovascular events. Carotid endarterectomy is the common operation method to treat this disease. In this study, hemodynamics analyses are performed on the carotid arteries in three patients, whose right carotid artery had been treated by carotid endarterectomy and the left carotid artery remained untreated. Flow and loading conditions are compared between these treated and untreated carotid arteries and evaluation of the operative results is discussed. Patient-specific models are reconstructed from MDCT data. Intraoperative ultrasound flow measurements are performed on the treated carotid arteries and the obtained data are used as the boundary conditions of the models and the validations of the computational results. Finite volume method is employed to solve the transport equations and the flow and loading conditions of the models are reported. The results indicate that: (i) in two of the three patients, the internal-to-external flow rate ratio in the untreated carotid artery is larger than that in the treated one, and the average overall flow split ratio by summing up the data of both the left and right carotid arteries is about 2.15; (ii) in the carotid bulb, high wall shear stress occurs at the bifurcation near the external carotid artery in all of the cases without hard plaques; (iii) the operated arteries present low time-averaged wall shear stress at the carotid bulb, especially for the treated arteries with patch technique, indicating the possibility of the recurrence of stenosis; (iv) high temporal gradient of wall shear stress (>35 Pa/s) is shown in the narrowing regions along the vessels; and (v) in the carotid arteries without serious stenosis, the maximum velocity magnitude during mid-diastole is 32~37% of that at systolic peak, however, in the carotid artery with 50% stenosis by hard plaques, this value is nearly doubled (64%). The computational work quantifies flow and loading distributions in the treated and untreated carotid arteries of the same patient, contributing to evaluation of the operative results and indicating the recurrent sites of potential atheromatous plaques.
Resumo:
Cognitive task performance differs considerably between individuals. Besides cognitive capacities, attention might be a source of such differences. The individual's EEG alpha frequency (IAF) is a putative marker of the subject's state of arousal and attention, and was found to be associated with task performance and cognitive capacities. However, little is known about the metabolic substrate (i.e. the network) underlying IAF. Here we aimed to identify this network. Correlation of IAF with regional Cerebral Blood Flow (rCBF) in fifteen young healthy subjects revealed a network of brain areas that are associated with the modulation of attention and preparedness for external input, which are relevant for task execution. We hypothesize that subjects with higher IAF have pre-activated task-relevant networks and thus are both more efficient in the task-execution, and show a reduced fMRI-BOLD response to the stimulus, not because the absolute amount of activation is smaller, but because the additional activation by processing of external input is limited due to the higher baseline.
Resumo:
Recently, a clinical study on patients with stable coronary artery disease (CAD) showed that external counterpulsation therapy (ECP) at high (300 mmHg) but not at low inflation pressure (80 mmHg) promoted coronary collateral growth, most likely due to shear stress-induced arteriogenesis. The exact molecular mechanisms behind shear stress-induced arteriogenesis are still obscure. We therefore characterized plasma levels of circulating microparticles (MPs) from these CAD patients because of their ambivalent nature as a known cardiovascular risk factor and as a promoter of neovascularization in the case of platelet-derived MPs. MPs positive for Annexin V and CD31CD41 were increased, albeit statistically significant (P<0.05, vs. baseline) only in patients receiving high inflation pressure ECP as determined by flow cytometry. MPs positive for CD62E, CD146, and CD14 were unaffected. In high, but not in low, inflation pressure treatment, change of CD31CD41 was inversely correlated to the change in collateral flow index (CFI), a measure for collateral growth. MPs from the high inflation pressure group had a more sustained pro-angiogenic effect than the ones from the low inflation pressure group, with the exception of one patient showing also an increased CFI after treatment. A total of 1005 proteins were identified by a label-free proteomics approach from MPs of three patients of each group applying stringent acceptance criteria. Based on semi-quantitative protein abundance measurements, MPs after ECP therapy contained more cellular proteins and increased CD31, corroborating the increase in MPs. Furthermore, we show that MP-associated factors of the innate immune system were decreased, many membrane-associated signaling proteins, and the known arteriogenesis stimulating protein transforming growth factor beta-1 were increased after ECP therapy. In conclusion, our data show that ECP therapy increases platelet-derived MPs in patients with CAD and that the change in protein cargo of MPs is likely in favor of a pro angiogenic/arteriogenic property.
Resumo:
The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that $v_2(\pi^+) < v_2(\pi^-)$ (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced $v_2$ splitting and its centrality dependence. We compare the results with the available experimental data.
Resumo:
OBJECT: Preliminary experience with the C-Port Flex-A Anastomosis System (Cardica, Inc.) to enable rapid automated anastomosis has been reported in coronary artery bypass surgery. The goal of the current study was to define the feasibility and safety of this method for high-flow extracranial-intracranial (EC-IC) bypass surgery in a clinical series. METHODS: In a prospective study design, patients with symptomatic carotid artery (CA) occlusion were selected for C-Port-assisted high-flow EC-IC bypass surgery if they met the following criteria: 1) transient or moderate permanent symptoms of focal ischemia; 2) CA occlusion; 3) hemodynamic instability; and 4) had provided informed consent. Bypasses were done using a radial artery graft that was proximally anastomosed to the superficial temporal artery trunk, the cervical external, or common CA. All distal cerebral anastomoses were performed on M2 branches using the C-Port Flex-A system. RESULTS: Within 6 months, 10 patients were enrolled in the study. The distal automated anastomosis could be accomplished in all patients; the median temporary occlusion time was 16.6+/-3.4 minutes. Intraoperative digital subtraction angiography (DSA) confirmed good bypass function in 9 patients, and in 1 the anastomosis was classified as fair. There was 1 major perioperative complication that consisted of the creation of a pseudoaneurysm due to a hardware problem. In all but 1 case the bypass was shown to be patent on DSA after 7 days; furthermore, in 1 patient a late occlusion developed due to vasospasm after a sylvian hemorrhage. One-week follow-up DSA revealed transient asymptomatic extracranial spasm of the donor artery and the radial artery graft in 1 case. Two patients developed a limited zone of infarction on CT scanning during the follow-up course. CONCLUSIONS: In patients with symptomatic CA occlusion, C-Port Flex-A-assisted high-flow EC-IC bypass surgery is a technically feasible procedure. The system needs further modification to achieve a faster and safer anastomosis to enable a conclusive comparison with standard and laser-assisted methods for high-flow bypass surgery.
Resumo:
BACKGROUND Little is known about the vasomotor function of human coronary collateral vessels. The purpose of this study was to examine collateral flow under a strong sympathetic stimulus (cold pressor test, CPT). METHODS In 30 patients (62 +/- 12 years) with coronary artery disease, two subsequent coronary artery occlusions were performed with random CPT during one of them. Two minutes before and during the 1 minute-occlusion, the patient's hand was immerged in ice water. For the calculation of a perfusion pressure-independent collateral flow index (CFI), the aortic (Pao), the central venous (CVP) and the coronary wedge pressure (Poccl) were measured: CFI = (Poccl - CVP)/(Pao - CVP). RESULTS CPT lead to an increase in Pao from 98 +/- 14 to 105 +/- 15 mm Hg (p = 0.002). Without and with CPT, CFI increased during occlusion from 14% +/- 10% to 16% +/- 10% (p = 0.03) and from 17% +/- 9% to 19% +/- 9% (p = 0.006), respectively, relative to normal flow. During CPT, CFI was significantly higher at the beginning as well as at the end of the occlusion compared to identical instants without CPT. CFI at the end of the control occlusion did not differ significantly from the CFI at the beginning of occlusion with CPT. CONCLUSIONS During balloon occlusion, collateral flow increased due to collateral recruitment independent of external sympathetic stimulation. Sympathetic stimulation using CPT additionally augmented collateral flow. The collateral-flow-increasing effect of CPT is comparable to the recruitment effect of the occlusion itself. This may reflect a coronary collateral vasodilation mediated by the sympathetic nervous system.
Resumo:
Background: The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. Methods: A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. Results: Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = -16/-64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). Conclusions: In schizophrenia patients, the posterior hub-which is considered the strongest part of the DMN-showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbances.
Resumo:
The present synopsis aims to integrate one study about memory training in very preterm-born children and two studies about cognition in patients with carotid artery stenosis before and after treatments. Preterm-born children are at increased risk of cognitive deficits and behavioural problems compared with peers born at term. This thesis determined whether memory training would improve cognitive functions in school-age very preterm-born children. Memory strategy training produced significant improvements in trained and non-trained cognitive functions; a core working memory training revealed significant effects on short-term memory and working memory tasks. Six months after training, children in both training groups showed better working memory performance than children in the waiting control group. This is evidence that memory training – an external influence on cognition – induces plastic changes in very preterm-born children. Patients with carotid artery stenosis are known to be at increased risk of cognitive impairment. We showed that patients with symptomatic or asymptomatic carotid artery stenosis were at higher risk for cognitive deficits than expected in a normative sample. This thesis seeks to link cognitive plasticity to internal factors like carotid stenosis. An external factor, which influences blood flow to the brain is the nature of the carotid artery stenosis treatment. Research on the effects of carotid artery stenosis treatment on cognition has produced inconsistent results. We found significant improvement in frontal lobe functions, visual memory and motor speed one year after treatment independent of the treatment type (best medical treatment, carotid artery stenting, carotid artery endarterectomy); providing evidence for ‘treatment-induced’ cognitive plasticity. Baseline performance was negatively associated with improvement in various cognitive functions after training in very preterm-born children and after treatment in patients with carotid artery stenosis. The present synopsis aims to integrate these findings into the current and relevant literature, and discuss consequences as well as methodological considerations resulting from the studies constituting the thesis at hand.