4 resultados para extension theory

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a version of operational set theory, OST−, without a choice operation, which has a machinery for Δ0Δ0 separation based on truth functions and the separation operator, and a new kind of applicative set theory, so-called weak explicit set theory WEST, based on Gödel operations. We show that both the theories and Kripke–Platek set theory KPKP with infinity are pairwise Π1Π1 equivalent. We also show analogous assertions for subtheories with ∈-induction restricted in various ways and for supertheories extended by powerset, beta, limit and Mahlo operations. Whereas the upper bound is given by a refinement of inductive definition in KPKP, the lower bound is by a combination, in a specific way, of realisability, (intuitionistic) forcing and negative interpretations. Thus, despite interpretability between classical theories, we make “a detour via intuitionistic theories”. The combined interpretation, seen as a model construction in the sense of Visser's miniature model theory, is a new way of construction for classical theories and could be said the third kind of model construction ever used which is non-trivial on the logical connective level, after generic extension à la Cohen and Krivine's classical realisability model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.