12 resultados para exponential
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To assess whether diffusion-weighted magnetic resonance imaging (DW-MRI) including bi-exponential fitting helps to detect residual/recurrent tumours after (chemo)radiotherapy of laryngeal and hypopharyngeal carcinoma.
Resumo:
The goal of this paper is to establish exponential convergence of $hp$-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the convergence of the $hp$-IP dG methods considered in [D. Schötzau, C. Schwab, T. P. Wihler, SIAM J. Numer. Anal., 51 (2013), pp. 1610--1633] based on axiparallel $\sigma$-geometric anisotropic meshes and $\bm{s}$-linear anisotropic polynomial degree distributions.
Resumo:
Serial correlation of extreme midlatitude cyclones observed at the storm track exits is explained by deviations from a Poisson process. To model these deviations, we apply fractional Poisson processes (FPPs) to extreme midlatitude cyclones, which are defined by the 850 hPa relative vorticity of the ERA interim reanalysis during boreal winter (DJF) and summer (JJA) seasons. Extremes are defined by a 99% quantile threshold in the grid-point time series. In general, FPPs are based on long-term memory and lead to non-exponential return time distributions. The return times are described by a Weibull distribution to approximate the Mittag–Leffler function in the FPPs. The Weibull shape parameter yields a dispersion parameter that agrees with results found for midlatitude cyclones. The memory of the FPP, which is determined by detrended fluctuation analysis, provides an independent estimate for the shape parameter. Thus, the analysis exhibits a concise framework of the deviation from Poisson statistics (by a dispersion parameter), non-exponential return times and memory (correlation) on the basis of a single parameter. The results have potential implications for the predictability of extreme cyclones.
Resumo:
The important application of semistatic hedging in financial markets naturally leads to the notion of quasi--self-dual processes. The focus of our study is to give new characterizations of quasi--self-duality. We analyze quasi--self-dual Lévy driven markets which do not admit arbitrage opportunities and derive a set of equivalent conditions for the stochastic logarithm of quasi--self-dual martingale models. Since for nonvanishing order parameter two martingale properties have to be satisfied simultaneously, there is a nontrivial relation between the order and shift parameter representing carrying costs in financial applications. This leads to an equation containing an integral term which has to be inverted in applications. We first discuss several important properties of this equation and, for some well-known Lévy-driven models, we derive a family of closed-form inversion formulae.
Resumo:
Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.