44 resultados para exercise performance

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Exertional oscillatory ventilation (EOV) in heart failure may potentiate the negative effects of low cardiac output and high ventilation on exercise performance. We hypothesized that the presence of EOV might, per se, influence exercise capacity as evaluated by maximal cardiopulmonary exercise test. METHODS AND RESULTS: We identified 78 severe chronic heart failure patient pairs with and without EOV. Patients were matched for sex, age and peak oxygen consumption (VO2). Patients with EOV showed, for the same peak VO2, a lower workload (WL) at peak (DeltaWatts=5.8+/-23.0, P=0.027), a less efficient ventilation (higher VE/VCO2 slope: 38.0+/-8.3 vs. 32.8+/-6.3, P<0.001), lower peak exercise tidal volume (1.49+/-0.36 L vs. 1.61+/-0.46 L, P=0.015) and higher peak respiratory rate (34+/-7/min vs. 31+/-6/min, P=0.002). In 33 patients, EOV disappeared during exercise, whereas in 45 patients EOV persisted. Fifty percent of EOV disappearing patients had an increase in the VO2/WL relationship after EOV regression, consistent with a more efficient oxygen delivery to muscles. No cardiopulmonary exercise test parameter was associated with the different behaviour of VO2/WL. CONCLUSION: The presence of EOV negatively influences exercise performance of chronic heart failure patients likely because of an increased cost of breathing. EOV disappearance during exercise is associated with a more efficient oxygen delivery in several cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits. METHODS Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test. RESULTS Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (-5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (-23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16). CONCLUSIONS Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to assess the effects on exercise performance of supplementing a standard cardiac rehabilitation program with additional exercise programming compared to the standard cardiac rehabilitation program alone in elderly patients after heart surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Attempting to achieve the high diversity of training goals in modern competitive alpine skiing simultaneously can be difficult and may lead to compromised overall adaptation. Therefore, we investigated the effect of block training periodization on maximal oxygen consumption (VO2max) and parameters of exercise performance in elite junior alpine skiers. Six female and 15 male athletes were assigned to high-intensity interval (IT, N = 13) or control training groups (CT, N = 8). IT performed 15 high-intensity aerobic interval (HIT) sessions in 11 days. Sessions were 4 x 4 min at 90-95% of maximal heart rate separated by 3-min recovery periods. CT continued their conventionally mixed training, containing endurance and strength sessions. Before and 7 days after training, subjects performed a ramp incremental test followed by a high-intensity time-to-exhaustion (tlim) test both on a cycle ergometer, a 90-s high-box jump test as well as countermovement (CMJ) and squat jumps (SJ) on a force plate. IT significantly improved relative VO2max by 6.0% (P < 0.01; male +7.5%, female +2.1%), relative peak power output by 5.5% (P < 0.01) and power output at ventilatory threshold 2 by 9.6% (P < 0.01). No changes occurred for these measures in CT. tlim remained unchanged in both groups. High-box jump performance was significantly improved in males of IT only (4.9%, P < 0.05). Jump peak power (CMJ -4.8%, SJ -4.1%; P < 0.01), but not height decreased in IT only. For competitive alpine skiers, block periodization of HIT offers a promising way to efficiently improve VO2max and performance. Compromised explosive jump performance might be associated with persisting muscle fatigue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise performance improvement after training in heart failure (HF) can be due to central or peripheral changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of wearing a mouthguard on maximal exercise capacity and cardiopulmonary parameters at peak workload, and to assess the athletes' attitudes toward wearing a mouthguard. Thirteen volunteer male athletes (18 to 27 years old) were interviewed before and after delivery of a custom-made laminated mouthguard. A visual analogue scale (VAS, 0 - 100 mm) was used for judgment of interference with breathing, speaking, concentration and athletic performance. In addition, the athletes were subjected to a cardiorespiratory examination on a cycle ergometer with and without mouthguards. Subjectively, the athletes rated the mean interference with performance to be 37 mm VAS at the beginning of the study. Mean scores of impairment decreased to 23 mm VAS (p = 0.081) after wearing the mouthguard for four weeks, and further improved to 12 mm VAS (p < 0.001) after the test on the cycle ergometer. Objectively, the maximum workload during spiroergometry was even slightly elevated during exercise with the mouthguard (330.2 W) compared to exercise without the mouthguard (314.5 W). Peak minute ventilation and oxygen uptake were not different during exercise with and without the mouthguard. The present study demonstrated that a custom-made mouthguard does not significantly affect or reduce maximum exercise performance of athletes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Surfactant protein type B (SPB) is needed for alveolar gas exchange. SPB is increased in the plasma of patients with heart failure (HF), with a concentration that is higher when HF severity is highest. The aim of this study was to evaluate the relationship between plasma SPB and both alveolar-capillary diffusion at rest and ventilation versus carbon dioxide production during exercise. METHODS AND RESULTS: Eighty patients with chronic HF and 20 healthy controls were evaluated consecutively, but the required quality for procedures was only reached by 71 patients with HF and 19 healthy controls. Each subject underwent pulmonary function measurements, including lung diffusion for carbon monoxide and membrane diffusion capacity, and maximal cardiopulmonary exercise test. Plasma SPB was measured by immunoblotting. In patients with HF, SPB values were higher (4.5 [11.1] versus 1.6 [2.9], P=0.0006, median and 25th to 75th interquartile), whereas lung diffusion for carbon monoxide (19.7+/-4.5 versus 24.6+/-6.8 mL/mm Hg per min, P<0.0001, mean+/-SD) and membrane diffusion capacity (28.9+/-7.4 versus 38.7+/-14.8, P<0.0001) were lower. Peak oxygen consumption and ventilation/carbon dioxide production slope were 16.2+/-4.3 versus 26.8+/-6.2 mL/kg per min (P<0.0001) and 29.7+/-5.9 and 24.5+/-3.2 (P<0.0001) in HF and controls, respectively. In the HF population, univariate analysis showed a significant relationship between plasma SPB and lung diffusion for carbon monoxide, membrane diffusion capacity, peak oxygen consumption, and ventilation/carbon dioxide production slope (P<0.0001 for all). On multivariable logistic regression analysis, membrane diffusion capacity (beta, -0.54; SE, 0.018; P<0.0001), peak oxygen consumption (beta, -0.53; SE, 0.036; P=0.004), and ventilation/carbon dioxide production slope (beta, 0.25; SE, 0.026; P=0.034) were independently associated with SPB. CONCLUSIONS: Circulating plasma SPB levels are related to alveolar gas diffusion, overall exercise performance, and efficiency of ventilation showing a link between alveolar-capillary barrier damage, gas exchange abnormalities, and exercise performance in HF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Total body water (TBW) is reduced in adult GH deficiency (GHD) largely due to a reduction of extracellular water. It is unknown whether total blood volume (TBV) contributes to the reduced extracellular water in GHD. GH and insulin-like growth factor I (IGF-I) have been demonstrated to stimulate erythropoiesis in vitro, in animal models, and in growing children. Whether GH has a regulatory effect on red cell mass (RCM) in adults is not known. We analyzed body composition by bioelectrical impedance and used standard radionuclide dilution methods to measure RCM and plasma volume (PV) along with measuring full blood count, ferritin, vitamin B12, red cell folate, IGF-I, IGF-binding protein-3, and erythropoietin in 13 adult patients with GHD as part of a 3-month, double blind, placebo-controlled trial of GH (0.036 U/kg.day). TBW and lean body mass significantly increased by 2.5 +/- 0.53 kg (mean +/- SEM; P < 0.004) and 3.4 +/- 0.73 kg (P < 0.004), respectively, and fat mass significantly decreased by 2.4 +/- 0.32 kg (P < 0.001) in the GH-treated group. The baseline RCM of all patients with GHD was lower than the predicted normal values (1635 +/- 108 vs. 1850 +/- 104 mL; P < 0.002). GH significantly increased RCM, PV, and TBV by 183 +/- 43 (P < 0.006), 350 +/- 117 (P < 0.03), and 515 +/- 109 (P < 0.004) mL, respectively. The red cell count increased by 0.36 +/- 0.116 x 10(12)/L (P < 0.03) with a decrease in ferritin levels by 39.1 +/- 4.84 micrograms/L (P < 0.001) after GH treatment. Serum IGF-I and IGF-binding protein-3 concentrations increased by 3.0 +/- 0.43 (P < 0.001) and 1.3 +/- 0.15 (P < 0.001) SD, respectively, but the erythropoietin concentration was unchanged after GH treatment. No significant changes in body composition or blood volume were recorded in the placebo group. Significant positive correlations could be established between changes in TBW and TBV, lean body mass and TBV (r = 0.78; P < 0.04 and r = 0.77; P < 0.04, respectively), and a significant negative correlation existed between changes in fat mass and changes in TBV in the GH-treated group (r = -0.95; P < 0.02). We conclude that 1) erythropoiesis is impaired in GHD; 2) GH stimulates erythropoiesis in adult GHD; and 3) GH increases PV and TBV, which may contribute to the increased exercise performance seen in these patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Prognostic classification of congestive heart failure (CHF) is difficult and only possible with the help of additional diagnostic tools. B-type natriuretic peptide (BNP) has been used as a diagnostic and prognostic marker for patients (pts) with CHF. In this study, the clinical value of BNP for stratification and treatment of pts with CHF was evaluated. PATIENTS AND METHODS 33 out-pts with CHF (age 57 +/- 12 years) were included. Left-ventricular (LV) ejection fraction (EF) was 27 +/- 8% (mean +/- SD) and NYHA-class 2.4 +/- 0.7. Following parameters were measured: BNP and sodium from blood samples, exercise performance from 6-minute walking test (6MWT, meters) (n = 18), LV end-diastolic diameter (LVEDD) and LV mass (LVM) from 2D-echocardiography (n = 33), as well as LV end-diastolic pressure (LVEDP, n = 23) and systemic vascular resistance (SVR, n = 20) from heart-catheterisation. Ten pts were hospitalised in the preceding 6 months because of worsening CHF or for optimisation of medical therapy. BNP was measured at the beginning and end of the hospital-stay. Follow-up was for 1 year. RESULTS Pts with a high NYHA-class had a higher BNP (pg/ml) than those with a low NYHA- class: NYHA I 51 +/- 20, II 281 +/- 223, III 562+/-346 and IV 1061 +/- 126 pg/ml (p = 0.002). BNP correlated with LVEDP (r = 0.50, p <0.02), SVR (r =0.49, p <0.03) and inversely with 6MWT (r =-0.60, p <0.009), LVEF (r = -0.49, p <0.004) and sodium (r = -0.36, p = 0.04). In the hospitalised pts, mean BNP (pg/ml) was 881 +/- 695 at admission,and 532 +/- 435 at discharge (n.s.). Decrease in BNPduring hospitalisation paralleled weight-loss and was significantly greater in patients with >1000 pg/ml BNP at admission (n = 5) as compared to the 5 patients with BNP <1000 (p <0.03). Patients with an adverse event during 1-year follow-up had significantly higher BNP both at steady-state (603 +/-359 pg/ml) and at time of decompensation than patients with a favourable outcome (227 +/- 218 pg/ml,p <0.001). CONCLUSIONS BNP correlates well with the clinical severity of CHF (NYHA-class) and is directly related to filling pressure (LVEDP), LV function(LVEF) and exercise performance (6 MWT). Furthermore, BNP has prognostic impact with regard to adverse clinical events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested the predictions of Attentional Control Theory (ACT) by examining how anxiety affects visual search strategies, performance efficiency, and performance effectiveness using a dynamic, temporal-constrained anticipation task. Higher and lower skilled players viewed soccer situations under 2 task constraints (near vs. far situation) and were tested under high (HA) and low (LA) anxiety conditions. Response accuracy (effectiveness) and response time, perceived mental effort, and eye-movements (all efficiency) were recorded. A significant increase in anxiety was evidenced by higher state anxiety ratings on the MRF-L scale. Increased anxiety led to decreased performance efficiency because response times and mental effort increased for both skill groups whereas response accuracy did not differ. Anxiety influenced search strategies, with higher skilled players showing a decrease in number of fixation locations for far situations under HA compared with LA condition when compared with lower skilled players. Findings provide support for ACT with anxiety impairing processing efficiency and, potentially, top-down attentional control across different task constraints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined the effect of normobaric hypoxia (3200 m) on maximal oxygen uptake (VO2max) and maximal power output (Pmax) during leg and upper-body exercise to identify functional and structural correlates of the variability in the decrement of VO2max (DeltaVO2max) and of maximal power output (DeltaPmax). Seven well trained male Nordic combined skiers performed incremental exercise tests to exhaustion on a cycle ergometer (leg exercise) and on a custom built doublepoling ergometer for cross-country skiing (upper-body exercise). Tests were carried out in normoxia (560 m) and normobaric hypoxia (3200 m); biopsies were taken from m. deltoideus. DeltaVO2max was not significantly different between leg (-9.1+/-4.9%) and upper-body exercise (-7.9+/-5.8%). By contrast, Pmax was significantly more reduced during leg exercise (-17.3+/-3.3%) than during upper-body exercise (-9.6+/-6.4%, p<0.05). Correlation analysis did not reveal any significant relationship between leg and upper-body exercise neither for DeltaVO2max nor for DeltaPmax. Furthermore, no relationship was observed between individual DeltaVO2max and DeltaPmax. Analysis of structural data of m. deltoideus revealed a significant correlation between capillary density and DeltaPmax (R=-0.80, p=0.03), as well as between volume density of mitochondria and DeltaPmax (R=-0.75, p=0.05). In conclusion, it seems that VO2max and Pmax are differently affected by hypoxia. The ability to tolerate hypoxia is a characteristic of the individual depending in part on the exercise mode. We present evidence that athletes with a high capillarity and a high muscular oxidative capacity are more sensitive to hypoxia.