8 resultados para executive attention
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
ABSTRACT Everyday routine in general and school settings in particular make high demands on children's abilities to sustain their focus of attention over longer time periods. School tasks thus require the child to accomplish the task on an appropriate level of performance while maintaining the focus of attention even under repetitious or distracting conditions. However, sustained attention (SA) may be a more heterogeneous construct than commonly assumed as it requires the individual not only to sustain attentional capacities but also to store and maintain the task rule (working memory), to inhibit inappropriate responses (inhibition), and to switch according to requirements (switching). It might thus involve processes counted among executive functions (EF). In the present study, performance in EF tasks (covering the core components inhibition, switching, and working memory) and in a SA task was assessed in 118 children, aged between 5;0 and 8;11 years. Similar age-dependent performance trajectories were found in EF components and SA, indicating ongoing performance improvements between 5 until at least 8 years of age in SA and in EF. Interrelations between single EF components and SA showed to be small to moderate. Finally, different patterns of SA performance predictions were found in age-homogeneous subgroups with inhibition being crucial for SA performance in the youngest and switching in the oldest age group. Taken as a whole, even though similarities in assumed developmental trajectories and substantial interrelations point to common underlying processes in EF and SA, age-dependent patterns of explained variance indicate clear discriminability.
Resumo:
This study investigated whether children aged between 8 and 12 years born very preterm (VPT) and/or at very low birth weight (VLBW) performed lower than same-aged term-born controls in cognitive and behavioral aspects of three executive functions: inhibition, working memory, and shifting. Special attention was given to sex differences. Fifty-two VPT/VLBW children (26 girls, 50%) born in the cohort of 1998-2003 and 36 same-aged term-born children (18 girls, 50%) were recruited. As cognitive measures, children completed tasks of inhibition (Color-Word Interference Test, D-KEFS; Delis, Kaplan, & Kramer, 2001 ), working memory (digit span backwards, HAWIK-IV; Petermann & Petermann, 2008 ), and shifting (Trail Making Test, number-letter-switching, D-KEFS; Delis et al., 2001 ). As behavioral measures, mothers completed the Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000 ). Scales of interest were inhibit, working memory, and shift. Analyses of the cognitive aspects of executive functions revealed that VPT/VLBW children performed significantly lower than controls in the shifting task but not in the working memory and inhibition tasks. Analyses of behavioral aspects of executive functions revealed that VPT/VLBW children displayed more problems than the controls in working memory in everyday life but not in inhibition and shifting. No sex differences could be detected either in cognitive or behavioral aspects of executive functions. To conclude, cognitive and behavioral measures of executive functions were not congruent in VPT/VLBW children. In clinical practice, the combination of cognitive and behavioral instruments is required to disclose children's executive difficulties.
Resumo:
Transcranial magnetic stimulation has evolved into a powerful neuroscientific tool allowing to interfere transiently with specific brain functions. In addition, repetitive TMS (rTMS) has long-term effects (e.g. on mood), probably mediated by neurochemical alterations. While long-term safety of rTMS with regard to cognitive functioning is well established from trials exploring its therapeutic efficacy, little is known on whether rTMS can induce changes in cognitive functioning in a time window ranging from minutes to hours, a time in which neurochemical effects correlated with stimulation have been demonstrated. This study examined effects of rTMS on three measures of executive function in healthy subjects who received one single rTMS session (40 trains of 2 s duration 20 Hz stimuli) at the left dorsolateral prefrontal cortex (DLPFC). Compared to a sham condition one week apart, divided attention performance was significantly impaired about 30-60 min after rTMS, while Stroop-interference and performance in the Wisconsin Card Sorting Test was unaffected after rTMS. Repetitive TMS of the left DLPFC, at stimulation parameters used in therapeutic studies, does not lead to a clinically relevant impairment of executive function after stimulation. However, the significant effect on divided attention suggests that cognitive effects of rTMS are not limited to the of acute stimulation, and may possibly reflect known neurochemical alterations induced by rTMS. Sensitive cognitive measures may be useful to trace those short-term effects of rTMS non-invasively in humans.
Resumo:
Selectivity in encoding, aspects of attentional control and their contribution to learning performance were explored in a sample of preschoolers. While the children are performing a learning task, their encoding of relevant and attention towards irrelevant information was recorded through an eye-tracking device. Recognition of target items was used as measure of learning outcome, and individual differences in resistance to interference and inhibition of attention to task-irrelevant stimuli (i.e. distractibility) were used as measures of executive control of attention. Results indicated well-developed selectivity during encoding in young children. Recognition performance was related to selective encoding and aspects of attentional control, explaining individual differences in learning. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Aims: This study investigated whether children aged between 8 - 12 years born very preterm (VPT) and/or at very low birth weight (VLBW) performed lower than same-aged term-born controls in cognitive and behavioral aspects of three executive functions: inhibition, working memory, and shifting. Special attention was given to sex differences. Methods: Fifty-two VPT/VLBW children (26 girls) born in the cohort of 1998–2003 at the Children’s University Hospital in Bern, Switzerland, and 36 same-aged term-born controls (18 girls) were recruited. As cognitive measures, children completed tasks of inhibition (Colour-Word Interference Test, D-KEFS), working memory (digit span backwards, WISC-IV) and shifting (Trail Making Test, number-letter switching, D-KEFS). As behavioral measures, mothers completed the Behavior Rating Inventory of Executive Function (BRIEF), assessing executive functions in everyday life.
Resumo:
In the recent past, various intrinsic connectivity networks (ICN) have been identified in the resting brain. It has been hypothesized that the fronto-parietal ICN is involved in attentional processes. Evidence for this claim stems from task-related activation studies that show a joint activation of the implicated brain regions during tasks that require sustained attention. In this study, we used functional magnetic resonance imaging (fMRI) to demonstrate that functional connectivity within the fronto-parietal network at rest directly relates to attention. We applied graph theory to functional connectivity data from multiple regions of interest and tested for associations with behavioral measures of attention as provided by the attentional network test (ANT), which we acquired in a separate session outside the MRI environment. We found robust statistical associations with centrality measures of global and local connectivity of nodes within the network with the alerting and executive control subfunctions of attention. The results provide further evidence for the functional significance of ICN and the hypothesized role of the fronto-parietal attention network. Hum Brain Mapp , 2013. © 2013 Wiley Periodicals, Inc.