23 resultados para ethylene vinyl acetate copolymer

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction between overlapping molecular and topographical signals introduces an additional level of control to this picture. The role of the substrate topography was demonstrated exploiting nanotechnologies to generate biomimetic scaffolds that control both the polarity of differentiating neurons and the alignment of their neurites. Here PC12 cells contacting nanogratings made of copolymer 2-norbornene ethylene (COC), were alternatively stimulated with Nerve Growth Factor, Forskolin, and 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic (8CPT-2Me-cAMP) or with a combination of them. Topographical guidance was differently modulated by the alternative stimulation protocols tested. Forskolin stimulation reduced the efficiency of neurite alignment to the nanogratings. This effect was linked to the inhibition of focal adhesion maturation. Modulation of neurite alignment and focal adhesion maturation upon Forskolin stimulation depended on the activation of the MEK/ERK signaling but were PkA independent. Altogether, our results demonstrate that topographical guidance in PC12 cells is modulated by the activation of alternative neuronal differentiation pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic iron oxide nanoparticles have found application as contrast agents for magnetic resonance imaging (MRI) and as switchable drug delivery vehicles. Their stabilization as colloidal carriers remains a challenge. The potential of poly(ethylene imine)-g-poly(ethylene glycol) (PEGPEI) as stabilizer for iron oxide (γ-Fe₂O₃) nanoparticles was studied in comparison to branched poly(ethylene imine) (PEI). Carrier systems consisting of γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were prepared and characterized regarding their physicochemical properties including magnetic resonance relaxometry. Colloidal stability of the formulations was tested in several media and cytotoxic effects in adenocarcinomic epithelial cells were investigated. Synthesized γ-Fe₂O₃ cores showed superparamagnetism and high degree of crystallinity. Diameters of polymer-coated nanoparticles γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were found to be 38.7 ± 1.0 nm and 40.4 ± 1.6 nm, respectively. No aggregation tendency was observable for γ-Fe₂O₃-PEGPEI over 12 h even in high ionic strength media. Furthermore, IC₅₀ values were significantly increased by more than 10-fold when compared to γ-Fe₂O₃-PEI. Formulations exhibited r₂ relaxivities of high numerical value, namely around 160 mM⁻¹ s⁻¹. In summary, novel carrier systems composed of γ-Fe₂O₃-PEGPEI meet key quality requirements rendering them promising for biomedical applications, e.g. as MRI contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Leuprolide acetate is a synthetic analog of gonadotropin-releasing hormone used for the treatment of prostate cancer. Its side effects are hot flashes, nausea, and fatigue. We report a case of a patient with proximal inflammatory myopathy accompanied by severe rhabdomyolysis and renal failure following the second application of leuprolide acetate. Drug withdrawal and steroid therapy resulted in remission within six weeks of the diagnosis. To the best of our knowledge, our case report describes the second case of leuprolide acetate-induced inflammatory myopathy and the first case of severe leuprolide acetate-induced rhabdomyolysis and renal failure in the literature. Case presentation A 64-year-old Swiss Caucasian man was admitted to the hospital because of progressive proximal muscle weakness, dyspnea, and oliguria. He had been treated twice with leuprolide acetate in monthly doses. We performed a muscle biopsy, which excluded other causes of myopathy. The patient's renal failure and rhabdomyolysis were treated with rehydration and steroid therapy. Conclusion The aim of our case report is to highlight the rare but severe side effects associated with leuprolide acetate therapy used to treat patients with inflammatory myopathy: severe rhabdomyolysis and renal failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of ethyl glucuronide (EtG), a marker of recent alcohol consumption, in serum with an optimized CZE assay is reported. The method uses a 0.1-mm id fused-silica capillary of 50 cm effective length that is coated with linear polyacrylamide, a pH 4.4 nicotinic acid/epsilon-aminocaproic acid (EACA) BGE, reversed polarity and indirect analyte detection. The assay is based on a 1:1 dilution of serum with deionized water and has LODs for EtG, lactate and acetate of 3.8 x 10(-7) M, 2.60 x 10(-6 )M and 2.18 x 10(-6 )M, respectively. Separation of EtG from endogenous macro- and microcomponents (anionic serum components of high and low concentration, respectively) and its quantification are shown to be possible for a wide range of lactate (stacker) and acetate (destacker) concentrations, macrocomponents that have an impact on the CZE behavior of EtG and that change after intake of ethanol. The assay has been successfully applied to the analysis of EtG, lactate and acetate in (i) sera of volunteers that ingested known amounts of alcohol and (ii) samples of patients that were classified (teetotalers and social drinkers vs. alcohol abusers) via analysis of carbohydrate-deficient transferrin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Anecortave acetate is an angiostatic cortisene which is injected as a posterior juxtascleral depot and has been shown to be effective in the treatment of exudative age-related macular degeneration (AMD). The compound is not yet approved in Switzerland but can be used as "compassionate use" in individual cases. PATIENTS AND METHODS: An uncontrolled case series with standardised documentation of ETDRS visual acuity, near acuity, need for magnification and fluorescein angiography was performed. RESULTS: 22 eyes of 19 patients (8 male, 11 female, average age 78.8 years) were treated with a posterior juxtascleral depot injection (PJD) of 15 mg anecortave acetate. The mean change in visual acuity after 3 months in eyes treated with anecortave acetate was -2.6 ETDRS letters corresponding to 0.52 Snellen lines. 3/20 eyes gained more than 1 line. 11/20 eyes showed stable visual acuity (+/- 1 Snellen line, +/- 5 ETDRS letters). 5/20 eyes developed moderate vision loss (one to two Snellen lines, 6-10 ETDRS letters). 1/20 lost 18 ETDRS letters (> 3 Snellen lines). There were no moderate or severe adverse events. CONCLUSIONS: A PJD of 15 mg anecortave acetate is safe and well tolerated. In eyes with occult CNV without recent progression or with residual neovascular activity after photodynamic therapy anecortave acetate may be an alternative therapeutic option before considering intravitreal anti-VEGF agents due to the much less invasive character and lower risk profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A concentrate for bicarbonate haemodialysis acidified with citrate instead of acetate has been marketed in recent years. The small amount of citrate used (one-fifth of the concentration adopted in regional anticoagulation) protects against intradialyser clotting while minimally affecting the calcium concentration. The aim of this study was to compare the impact of citrate- and acetate-based dialysates on systemic haemodynamics, coagulation, acid-base status, calcium balance and dialysis efficiency. METHODS: In 25 patients who underwent a total of 375 dialysis sessions, an acetate dialysate (A) was compared with a citrate dialysate with (C+) or without (C) calcium supplementation (0.25 mmol/L) in a randomised single-blind cross-over study. Systemic haemodynamics were evaluated using pulse-wave analysis. Coagulation, acid-base status, calcium balance and dialysis efficiency were assessed using standard biochemical markers. RESULTS: Patients receiving the citrate dialysate had significantly lower systolic blood pressure (BP) (-4.3 mmHg, p < 0.01) and peripheral resistances (PR) (-51 dyne.sec.cm-5, p < 0.001) while stroke volume was not increased. In hypertensive patients there was a substantial reduction in BP (-7.8 mmHg, p < 0.01). With the C+ dialysate the BP gap was less pronounced but the reduction in PR was even greater (-226 dyne.sec.cm-5, p < 0.001). Analyses of the fluctuations in PR and of subjective tolerance suggested improved haemodynamic stability with the citrate dialysate. Furthermore, an increase in pre-dialysis bicarbonate and a decrease in pre-dialysis BUN, post-dialysis phosphate and ionised calcium were noted. Systemic coagulation activation was not influenced by citrate. CONCLUSION: The positive impact on dialysis efficiency, acid-base status and haemodynamics, as well as the subjective tolerance, together indicate that citrate dialysate can significantly contribute to improving haemodialysis in selected patients.