5 resultados para error-location number

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was (1) to determine frequency and type of medication errors (MEs), (2) to assess the number of MEs prevented by registered nurses, (3) to assess the consequences of ME for patients, and (4) to compare the number of MEs reported by a newly developed medication error self-reporting tool to the number reported by the traditional incident reporting system. We conducted a cross-sectional study on ME in the Cardiovascular Surgery Department of Bern University Hospital in Switzerland. Eligible registered nurses (n = 119) involving in the medication process were included. Data on ME were collected using an investigator-developed medication error self reporting tool (MESRT) that asked about the occurrence and characteristics of ME. Registered nurses were instructed to complete a MESRT at the end of each shift even if there was no ME. All MESRTs were completed anonymously. During the one-month study period, a total of 987 MESRTs were returned. Of the 987 completed MESRTs, 288 (29%) indicated that there had been an ME. Registered nurses reported preventing 49 (5%) MEs. Overall, eight (2.8%) MEs had patient consequences. The high response rate suggests that this new method may be a very effective approach to detect, report, and describe ME in hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in-depth study, using simulations and covariance analysis, is performed to identify the optimal sequence of observations to obtain the most accurate orbit propagation. The accuracy of the results of an orbit determination/ improvement process depends on: tracklet length, number of observations, type of orbit, astrometric error, time interval between tracklets and observation geometry. The latter depends on the position of the object along its orbit and the location of the observing station. This covariance analysis aims to optimize the observation strategy taking into account the influence of the orbit shape, of the relative object-observer geometry and the interval between observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for orbital debris. The debris objects are discovered during systematic survey observations. In general only a short observation arc, or tracklet, is available for most of these objects. From this discovery tracklet a first orbit determination is computed in order to be able to find the object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In this paper, the accuracy of the initial orbit determination is analyzed. This depends on a number of factors: tracklet length, number of observations, type of orbit, astrometric error, and observation geometry. The latter is characterized by both the position of the object along its orbit and the location of the observing station. Different positions involve different distances from the target object and a different observing angle with respect to its orbital plane and trajectory. The present analysis aims at optimizing the geometry of the discovery observation is depending on the considered orbit.