4 resultados para error-feedback synchronization
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.
Resumo:
Clock synchronization is critical for the operation of a distributed wireless network system. In this paper we investigate on a method able to evaluate in real time the synchronization offset between devices down to nanoseconds (as needed for positioning). The method is inspired by signal processing algorithms and relies on fine-grain time information obtained during the reconstruction of the signal at the receiver. Applying the method to a GPS-synchronized system show that GPS-based synchronization has high accuracy potential but still suffers from short-term clock drift, which limits the achievable localization error.
Resumo:
Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Our method to evaluate the synchronization accuracy is inspired by signal processing algorithms and relies on fine grain time information. The method is able to calculate the clock offset and skew between devices with nanosecond accuracy in real time. It was implemented using software defined radio technology. We demonstrate that GPS-based synchronization suffers from remaining clock offset in the range of a few hundred of nanoseconds but the clock skew is negligible. Finally, we determine a corresponding lower bound on the expected positioning error.
Resumo:
Effective adaptive behavior rests on an appropriate understanding of how much responsibility we have over outcomes in the environment. This attribution of agency to ourselves or to an external event influences our behavioral and affective response to the outcomes. Despite its special importance to understanding human motivation and affect, the neural mechanisms involved in self-attributed rewards and punishments remain unclear. Previous evidence implicates the anterior insula (AI) in evaluating the consequences of our own actions. However, it is unclear if the AI has a general role in feedback evaluation (positive and negative) or plays a specific role during error processing. Using functional magnetic resonance imaging and a motion prediction task, we investigate neural responses to self- and externally attributed monetary gains and losses. We found that attribution effects vary according to the valence of feedback: significant valence × attribution interactions in the right AI, the anterior cingulate cortex (ACC), the midbrain, and the right ventral putamen. Self-attributed losses were associated with increased activity in the midbrain, the ACC and the right AI, and negative BOLD response in the ventral putamen. However, higher BOLD activity to self-attributed feedback (losses and gains) was observed in the left AI, the thalamus, and the cerebellar vermis. These results suggest a functional lateralization of the AI. The right AI, together with the midbrain and the ACC, is mainly involved in processing the salience of the outcome, whereas the left is part of a cerebello-thalamic-cortical pathway involved in cognitive control processes important for subsequent behavioral adaptations.