3 resultados para error region
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.
Resumo:
The deglaciation history of the Swiss Alps after the Last Glacial Maximum involved the decay of several ice domes and the subsequent disintegration of valley glaciers at high altitude. Here we use bedrock exposure dating to reconstruct the temporal and spatial pattern of ice retreat at the Simplon Pass (altitude: ∼2000 m) located 40 km southwest of the ‘Rhône ice dome’. Eleven 10Be exposure ages from glacially polished quartz veins and ice-molded bedrock surfaces cluster tightly between 13.5 ± 0.6 ka and 15.4 ± 0.6 ka (internal errors) indicating that the Simplon Pass depression became ice-free at 14.1 ± 0.4 ka (external error of mean age). This age constraint is interpreted to record the melting of the high valley glaciers in the Simplon Pass region during the warm Bølling–Allerød interstadial shortly after the Oldest Dryas stadial. Two bedrock samples collected a few hundred meters above the pass depression yield older 10Be ages of 17.8 ± 0.6 ka and 18.0 ± 0.6 ka. These ages likely reflect the initial downwasting of the Rhône ice dome and the termination of the ice transfluence from the ice dome across the Simplon Pass toward the southern foreland. There, the retreat of the piedmont glacier in Val d’Ossola was roughly synchronous with the decay of the Rhône ice dome in the interior of the mountain belt, as shown by 10Be ages of 17.7 ± 0.9 ka and 16.1 ± 0.6 ka for a whaleback at ∼500 m elevation near Montecrestese in northern Italy. In combination with well-dated paleoclimate records derived from lake sediments, our new age data suggest that during the deglaciation of the European Alps the decay of ice domes was approximately synchronous with the retreat of piedmont glaciers in the foreland and was followed by the melting of high-altitude valley glaciers after the transition from the Oldest Dryas to the Bølling–Allerød, when mean annual temperatures rose rapidly by ∼3 °C.
Resumo:
The Itremo region in Central Madagascar comprises a deformed metasedimentary sequence (Itremo Group) that has undergone greenschist to lower amphibolite facies metamorphism. During a first phase of deformation (D1) Itremo Group sediments were deformed into a fold-and-thrust belt and transported toward the E to NE on top of migmatitic gneisses rocks of Anatananarivo block. A second phase of deformation (D2) affected both the fold-and-thrust belt and structurally underlying units, and formed large-scale N-S trending folds with steeply dipping axial planes. A Late Neoproterozoic Th–U–Pb XRF monazite age (565±17 Ma) dates the emplacement of a granite that truncates first-phase structures in the Itremo Group, and indicates that the fold-and-thrust belt formed prior to ≈565 Ma. Th–U–Pb electron microprobe dating was applied to elongated monazites that lie within the first-phase foliation of Itremo Group metapelites. The detrital cores of zoned monazites reveal two distinct age populations at ∼2000 and 1700 Ma, the latter age giving a maximum depositional age for the Itremo Group. Statistical analysis of ages determined from the rims of zoned monazites and from unzoned monazites indicates three Late Proterozoic–Early Paleozoic monazite growth events at about 565–540, 500 and 430 Ma. The oldest age population is contemporaneous within error, with the intrusion of the dated granite. The two younger age populations are found both in the Th–U–Pb and Ar–Ar data; together with the perturbation of the Rb–Sr system we interpret both ages as due to alteration related to fluid circulation events, possibly connected to the emplacement of pegmatite fields in Central Madagascar. Syn-D1 tectonic growth of contact metamorphism minerals such as andalusite has been observed locally in metapelites along the margin of Middle Neoproterozoic (≈800 Ma) granites, suggesting that D1 in the Itremo Group is contemporaneous with the intrusion of granites at ≈800 Ma. The N-S trending D2 folds are associated with ≈E-W shortening during the final assembly of Gondwana in Late Neoproterozoic–Early Cambrian times.