4 resultados para erosion strength

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral in our teeth is composed of a calcium-deficient carbonated hydroxyapatite (Ca10-xNax(PO4)6-y(CO3)z(OH)2-uFu). These substitutions in the mineral crystal lattice, especially carbonate, renders tooth mineral more acid soluble than hydroxyapatite. During erosion by acid and/or chelators, these agents interact with the surface of the mineral crystals, but only after they diffuse through the plaque, the pellicle, and the protein/lipid coating of the individual crystals themselves. The effect of direct attack by the hydrogen ion is to combine with the carbonate and/or phosphate releasing all of the ions from that region of the crystal surface leading to direct surface etching. Acids such as citric acid have a more complex interaction. In water they exist as a mixture of hydrogen ions, acid anions (e.g. citrate) and undissociated acid molecules, with the amounts of each determined by the acid dissociation constant (pKa) and the pH of the solution. Above the effect of the hydrogen ion, the citrate ion can complex with calcium also removing it from the crystal surface and/or from saliva. Values of the strength of acid (pKa) and for the anion-calcium interaction and the mechanisms of interaction with the tooth mineral on the surface and underneath are described in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have identified relationships between landscape form, erosion and climate in regions of landscape rejuvenation, associated with increased denudation. Most of these landscapes are located in non-glaciated mountain ranges and are characterized by transient geomorphic features. The landscapes of the Swiss Alps are likewise in a transient geomorphic state as seen by multiple knickzones. In this mountain belt, the transient state has been related to erosional effects during the Late Glacial Maximum (LGM). Here, we focus on the catchment scale and categorize hillslopes based on erosional mechanisms, landscape form and landcover. We then explore relationships of these variables to precipitation and extent of LGM glaciers to disentangle modern versus palaeo controls on the modern shape of the Alpine landscape. We find that in grasslands, the downslope flux of material mainly involves unconsolidated material through hillslope creep, testifying a transport-limited erosional regime. Alternatively, strength-limited hillslopes, where erosion is driven by bedrock failure, are covered by forests and/or expose bedrock, and they display oversteepened hillslopes and channels. There, hillslope gradients and relief are more closely correlated with LGM ice occurrence than with precipitation or the erodibility of the underlying bedrock. We relate the spatial occurrence of the transport- and strength-limited process domains to the erosive effects of LGM glaciers. In particular, strength-limited, rock dominated basins are situated above the equilibrium line altitude (ELA) of the LGM, reflecting the ability of glaciers to scour the landscape beyond threshold slope conditions. In contrast, transport-limited, soil-mantled landscapes are common below the ELA. Hillslopes covered by forests occupy the elevations around the ELA and are constrained by the tree line. We conclude that the current erosional forces at work in the Central Alps are still responding to LGM glaciation, and that the modern climate has not yet impacted on the modern landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn(2+) increases bond strength of the adhesive Clearfil SE (Kuraray), the aim of the present study was to investigate whether pre-treatment with different Sn(2+)/F(-) solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group) were freed of smear layer (0.5% citric acid, 10 s), treated (15 s) either with no solution (control), aminefluoride (AmF, 500 ppm F(-), pH 4.5), SnCl2 (800/1600 ppm Sn(2+); pH 1.5), SnCl2/AmF (500 ppm F(-), 800 ppm Sn(2+), pH 1.5/3.0/4.5), or Elmex Erosion Protection Rinse (EP, 500 ppm F-, 800 ppm Sn(2+), pH 4.5; GABA International), then rinsed with water (15 s) and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5 °C/55 °C; 2 min) and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80). As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle) were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn(2+)/F(-) solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine.