2 resultados para epidemic model

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Estimates of the size of the undiagnosed HIV-infected population are important to understand the HIV epidemic and to plan interventions, including "test-and-treat" strategies. METHODS We developed a multi-state back-calculation model to estimate HIV incidence, time between infection and diagnosis, and the undiagnosed population by CD4 count strata, using surveillance data on new HIV and AIDS diagnoses. The HIV incidence curve was modelled using cubic splines. The model was tested on simulated data and applied to surveillance data on men who have sex with men in The Netherlands. RESULTS The number of HIV infections could be estimated accurately using simulated data, with most values within the 95% confidence intervals of model predictions. When applying the model to Dutch surveillance data, 15,400 (95% confidence interval [CI] = 15,000, 16,000) men who have sex with men were estimated to have been infected between 1980 and 2011. HIV incidence showed a bimodal distribution, with peaks around 1985 and 2005 and a decline in recent years. Mean time to diagnosis was 6.1 (95% CI = 5.8, 6.4) years between 1984 and 1995 and decreased to 2.6 (2.3, 3.0) years in 2011. By the end of 2011, 11,500 (11,000, 12,000) men who have sex with men in The Netherlands were estimated to be living with HIV, of whom 1,750 (1,450, 2,200) were still undiagnosed. Of the undiagnosed men who have sex with men, 29% (22, 37) were infected for less than 1 year, and 16% (13, 20) for more than 5 years. CONCLUSIONS This multi-state back-calculation model will be useful to estimate HIV incidence, time to diagnosis, and the undiagnosed HIV epidemic based on routine surveillance data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.