9 resultados para enzymology

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1), catalyzing the intracellular activation of cortisone to cortisol, is currently considered a promising target to treat patients with metabolic syndrome; hence, there is considerable interest in the development of selective inhibitors. For preclinical tests of such inhibitors, the characteristics of 11beta-HSD1 from the commonly used species have to be known. Therefore, we determined differences in substrate affinity and inhibitor effects for 11beta-HSD1 from six species. The differences in catalytic activities with cortisone and 11-dehydrocorticosterone were rather modest. Human, hamster and guinea-pig 11beta-HSD1 displayed the highest catalytic efficiency in the oxoreduction of cortisone, while mouse and rat showed intermediate and dog the lowest activity. Murine 11beta-HSD1 most efficiently reduced 11-dehydrocorticosterone, while the enzyme from dog showed lower activity than those from the other species. 7-ketocholesterol (7KC) was stereospecifically converted to 7beta-hydroxycholesterol by recombinant 11beta-HSD1 from all species analyzed except hamster, which showed a slight preference for the formation of 7alpha-hydroxycholesterol. Importantly, guinea-pig and canine 11beta-HSD1 displayed very low 7-oxoreductase activities. Furthermore, we demonstrate significant species-specific variability in the potency of various 11beta-HSD1 inhibitors, including endogenous compounds, natural chemicals and pharmaceutical compounds. The results suggest significant differences in the three-dimensional organization of the hydrophobic substrate-binding pocket of 11beta-HSD1, and they emphasize that species-specific variability must be considered in the interpretation of results obtained from different animal experiments. The assessment of such differences, by cell-based test systems, may help to choose the appropriate animal for safety and efficacy studies of novel potential drug candidates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is accumulating evidence for the involvement of the unfolded protein response (UPR) in the pathogenesis of many tumor types in humans. This is particularly the case in rapidly growing solid tumors in which the demand for oxygen and nutrients can exceed the supply until new tumor-initiated blood vessels are formed. In contrast, the role of the UPR during leukemogenesis remains largely unknown. Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of somatic mutations in hematopoietic progenitor cells that alter the physiological regulation of self-renewal, survival, proliferation, or differentiation. The CCAAT/enhancer-binding protein alpha (CEBPA) gene is a key myeloid transcription factor and a frequent target for disruption in AML. In particular, translation of CEBPA mRNA can be specifically blocked by binding of the chaperone calreticulin (CALR), a well-established effector of the UPR, to a stem loop structure within the 5' region of the CEBPA mRNA. The relevance of this mechanism was first elucidated in certain AML subtypes carrying the gene rearrangements t(3;21) or inv(16). In our recent work, we could demonstrate the induction of key effectors of the UPR in leukemic cells of AML patients comprising all subtypes (according to the French-American-British (FAB) classification for human AML). The formation of the spliced variant of the X-box binding protein (XBP1s) was detectable in 17.4% (17 of 105) of AML patients. Consistent with an activated UPR, this group had significantly increased expression of the UPR target genes CALR, the 78 kDa glucose-regulated protein (GRP78), and the CCAAT/enhancer-binding protein homologous protein (CHOP). Consistently, in vitro studies confirmed that calreticulin expression was upregulated via activation of the ATF6 pathway in myeloid leukemic cells. As a consequence, CEBPA protein expression was inhibited in vitro as well as in leukemic cells from patients with activated UPR. We therefore propose a model of the UPR being involved in leukemogenesis through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation and cell-cycle deregulation which represent key features of the leukemic phenotype. From a more clinical point of view, the presence of activated UPR in AML patient samples was found to be associated with a favorable disease course.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SerpinB1 is a clade B serpin, or ov-serpin, found at high levels in the cytoplasm of neutrophils. SerpinB1 inhibits neutrophil serine proteases, which are important in killing microbes. When released from granules, these potent enzymes also destroy host proteins and contribute to morbidity and mortality in inflammatory diseases including emphysema, chronic obstructive pulmonary disease, cystic fibrosis, arthritis, and sepsis. Studies of serpinB1-deficient mice have established a crucial role for this serpin in Pseudomonas aeruginosa infection by preserving lung antimicrobial proteins from proteolysis and by protecting lung-recruited neutrophils from a premature death. SerpinB1⁻/⁻ mice also have a severe defect in the bone marrow reserve of mature neutrophils demonstrating a key role for serpinB1 in cellular homeostasis. Here, key methods used to generate and characterize serpinB1⁻/⁻ mice are described including intranasal inoculation, myeloperoxidase activity, flow cytometry analysis of bone marrow myeloid cells, and elastase activity. SerpinB1-knockout mice provide a model to dissect the pathogenesis of inflammatory disease characterized by protease:antiprotease imbalance and may be used to assess the efficacy of therapeutic compounds.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress toward elucidating the 3D structures of eukaryotic membrane proteins has been hampered by the lack of appropriate expression systems. Recent work using the Xenopus oocyte as a novel expression system for structural analysis demonstrates the capability of providing not only the significant amount of protein yields required for structural work but also the expression of eukaryotic membrane proteins in a more native and functional conformation. There is a long history using the oocyte expression system as an efficient tool for membrane transporter and channel expression in direct functional analysis, but improvements in robotic injection systems and protein yield optimization allow the rapid scalability of expressed proteins to be purified and characterized in physiologically relevant structural states. Traditional overexpression systems (yeast, bacteria, and insect cells) by comparison require chaotropic conditions over several steps for extraction, solubilization, and purification. By contrast, overexpressing within the oocyte system for subsequent negative-staining transmission electron microscopy studies provides a single system that can functionally assess and purify eukaryotic membrane proteins in fewer steps maintaining the physiological properties of the membrane protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mature 3' ends of histone mRNAs are formed by endonucleolytic cleavage of longer precursor transcripts. This process occurs in the nucleus and can be regarded as the equivalent of the polyadenylation reaction involved in 3′-end-generation of all other mRNAs. A sea urchin H3 gene that failed to be properly processed in the Xenopus oocyte system proved particularly useful, because it allowed the identification of a processing component from sea urchins by a complementation assay. Nuclear extracts prepared from cells under various growth conditions have helped to reveal proliferation-dependent changes in the efficiency of histone RNA 3′ processing. RNA substrates for in vitro processing are best prepared by runoff transcription of specific DNA templates with bacterial or phage RNA polymerases. For this purpose, a restriction fragment containing the 3′-terminal region of a histone gene and including the conserved palindrome and spacer motifs is cloned into a polylinker sequence downstream of a strong promoter.