7 resultados para enzymeless biosensors

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetically encoded, ratiometric biosensors based on fluorescence resonance energy transfer (FRET) are powerful tools to study the spatiotemporal dynamics of cell signaling. However, many biosensors lack sensitivity. We present a biosensor library that contains circularly permutated mutants for both the donor and acceptor fluorophores, which alter the orientation of the dipoles and thus better accommodate structural constraints imposed by different signaling molecules while maintaining FRET efficiency. Our strategy improved the brightness and dynamic range of preexisting RhoA and extracellular signal-regulated protein kinase (ERK) biosensors. Using the improved RhoA biosensor, we found micrometer-sized zones of RhoA activity at the tip of F-actin bundles in growth cone filopodia during neurite extension, whereas RhoA was globally activated throughout collapsing growth cones. RhoA was also activated in filopodia and protruding membranes at the leading edge of motile fibroblasts. Using the improved ERK biosensor, we simultaneously measured ERK activation dynamics in multiple cells using low-magnification microscopy and performed in vivo FRET imaging in zebrafish. Thus, we provide a construction toolkit consisting of a vector set, which enables facile generation of sensitive biosensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The effectiveness of durable polymer drug-eluting stents comes at the expense of delayed arterial healing and subsequent late adverse events such as stent thrombosis (ST). We report the 4 year follow-up of an assessment of biodegradable polymer-based drug-eluting stents, which aim to improve safety by avoiding the persistent inflammatory stimulus of durable polymers. Methods We did a multicentre, assessor-masked, non-inferiority trial. Between Nov 27, 2006, and May 18, 2007, patients aged 18 years or older with coronary artery disease were randomly allocated with a computer-generated sequence to receive either biodegradable polymer biolimus-eluting stents (BES) or durable polymer sirolimus-eluting stents (SES; 1:1 ratio). The primary endpoint was a composite of cardiac death, myocardial infarction, or clinically-indicated target vessel revascularisation (TVR); patients were followed-up for 4 years. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00389220. Findings 1707 patients with 2472 lesions were randomly allocated to receive either biodegradable polymer BES (857 patients, 1257 lesions) or durable polymer SES (850 patients, 1215 lesions). At 4 years, biodegradable polymer BES were non-inferior to durable polymer SES for the primary endpoint: 160 (18·7%) patients versus 192 (22·6%) patients (rate ratios [RR] 0·81, 95% CI 0·66–1·00, p for non-inferiority <0·0001, p for superiority=0·050). The RR of definite ST was 0·62 (0·35–1·08, p=0·09), which was largely attributable to a lower risk of very late definite ST between years 1 and 4 in the BES group than in the SES group (RR 0·20, 95% CI 0·06–0·67, p=0·004). Conversely, the RR of definite ST during the first year was 0·99 (0·51–1·95; p=0·98) and the test for interaction between RR of definite ST and time was positive (pinteraction=0·017). We recorded an interaction with time for events associated with ST but not for other events. For primary endpoint events associated with ST, the RR was 0·86 (0·41–1·80) during the first year and 0·17 (0·04–0·78) during subsequent years (pinteraction=0·049). Interpretation Biodegradable polymer BES are non-inferior to durable polymer SES and, by reducing the risk of cardiac events associated with very late ST, might improve long-term clinical outcomes for up to 4 years compared with durable polymer SES. Funding Biosensors Europe SA, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soluble and stable fibrin monomer-fibrinogen complex (SF) is well known to be present in the circulating blood of healthy individuals and of patients with thrombotic diseases. However, its physiological role is not yet fully understood. To deepen our knowledge about this complex, a method for the quantitative analysis of interaction between soluble fibrin monomers and surface-immobilized fibrinogen has been established by means of resonant mirror (IAsys) and surface plasmon resonance (BIAcore) biosensors. The protocols have been optimized and validated by choosing appropriate immobilization procedures with regeneration steps and suitable fibrin concentrations. The highly specific binding of fibrin monomers to immobilized fibrin(ogen), or vice versa, was characterized by an affinity constant of approximately 10(-8)M, which accords better with the direct dissociation of fibrin triads (KD approximately 10(-8) -10(-9) M) (J. R. Shainoff and B. N. Dardik, Annals of the New York Academy of Science, 1983, Vol. 27, pp. 254-268) than with earlier estimations of the KD for the fibrin-fibrinogen complex (KD approximately 10(-6) M) (J. L. Usero, C. Izquierdo, F. J. Burguillo, M. G. Roig, A. del Arco, and M. A. Herraez, International Journal of Biochemistry, 1981, Vol. 13, pp. 1191-1196).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: A novel stent platform eluting biolimus, a sirolimus analogue, from a biodegradable polymer showed promising results in preliminary studies. We compared the safety and efficacy of a biolimus-eluting stent (with biodegradable polymer) with a sirolimus-eluting stent (with durable polymer). METHODS: We undertook a multicentre, assessor-blind, non-inferiority study in ten European centres. 1707 patients aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes were centrally randomised by a computer-generated allocation sequence to treatment with either biolimus-eluting (n=857) or sirolimus-eluting (n=850) stents. The primary endpoint was a composite of cardiac death, myocardial infarction, or clinically-indicated target vessel revascularisation within 9 months. Analysis was by intention to treat. 427 patients were randomly allocated to angiographic follow-up, with in-stent percentage diameter stenosis as principal outcome measure at 9 months. The trial is registered with ClinicalTrials.gov, number NCT00389220. FINDINGS: We analysed all randomised patients. Biolimus-eluting stents were non-inferior to sirolimus-eluting stents for the primary endpoint at 9 months (79 [9%] patients vs 89 [11%], rate ratio 0.88 [95% CI 0.64-1.19], p for non-inferiority=0.003, p for superiority=0.39). Frequency of cardiac death (14 [1.6%] vs 21 [2.5%], p for superiority=0.22), myocardial infarction (49 [5.7%] vs 39 [4.6%], p=0.30), and clinically-indicated target vessel revascularisation (38 [4.4%] vs 47 [5.5%], p=0.29) were similar for both stent types. 168 (79%) patients in the biolimus-eluting group and 167 (78%) in the sirolimus-eluting group had data for angiographic follow-up available. Biolimus-eluting stents were non-inferior to sirolimus-eluting stents in in-stent percentage diameter stenosis (20.9%vs 23.3%, difference -2.2% [95% CI -6.0 to 1.6], p for non-inferiority=0.001, p for superiority=0.26). INTERPRETATION: Our results suggest that a stent eluting biolimus from a biodegradable polymer represents a safe and effective alternative to a stent eluting sirolimus from a durable polymer in patients with chronic stable coronary artery disease or acute coronary syndromes. FUNDING: Biosensors Europe SA, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of a high-density active microelectrode array for in vitro electrophysiology is reported. Based on the Active Pixel Sensor (APS) concept, the array integrates 4096 gold microelectrodes (electrode separation 20 microm) on a surface of 2.5 mmx2.5 mm as well as a high-speed random addressing logic allowing the sequential selection of the measuring pixels. Following the electrical characterization in a phosphate solution, the functional evaluation has been carried out by recording the spontaneous electrical activity of neonatal rat cardiomyocytes. Signals with amplitudes from 130 microVp-p to 300 microVp-p could be recorded from different pixels. The results demonstrate the suitability of the APS concept for developing a new generation of high-resolution extracellular recording devices for in vitro electrophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using variothermal polymer micro-injection molding, disposable arrays of eight polymer micro-cantilevers each 500 μm long, 100 μm wide and 25 μm thick were fabricated. The present study took advantage of an easy flow grade polypropylene. After gold coating for optical read-out and asymmetrical sensitization, the arrays were introduced into the Cantisens(®) Research system to perform mechanical and functional testing. We demonstrate that polypropylene cantilevers can be used as biosensors for medical purposes in the same manner as the established silicon ones to detect single-stranded DNA sequences and metal ions in real-time. A differential signal of 7 nm was detected for the hybridization of 1 μM complementary DNA sequences. For 100 nM copper ions the differential signal was found to be (36 ± 5) nm. Nano-mechanical sensing of medically relevant, nanometer-size species is essential for fast and efficient diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility.