21 resultados para environmental response

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prior to ca. 14,660 yr BP, during the early Late-glacial (Oldest Dryas), larval assemblages of Chironomidae (Insecta: Diptera) in Gerzensee, Switzerland, were dominated by cold stenothermic taxa as well as by taxa typical of subalpine lakes today. This was the coldest period of the entire sequence. After ca. 14,660 yr BP, in the Late Glacial Interstadial (Bølling–Allerød), a temperature increase is recorded by a sharp rise in the oxygen-isotope ratio in lake marl and by an increase in the organic-matter content of the sediments. Changes in the chironomid fauna then are consistent with rising temperatures. This warming trend is interrupted between 14,070 and 13,940 yr BP, coinciding with the GI-1d cold oscillation, but the change in the chironomid assemblage is more consistent with a response to increasing lake depth and density of aquatic macrophytes than falling temperature. A rise in cold-adapted chironomid taxa between 13,840 and 13,710 yr BP suggests that summer air temperatures may have declined. Changes in the chironomid assemblage after 13,710 yr BP suggest a decline in submerged macrophytes coupled with a rise in lake productivity and summer temperature, although the latter is not reflected in the oxygen-isotope record. This suggests that there may have been increasing seasonality during this period when summer temperatures were rising, driven by rising summer insolation, and winters becoming cooler, which is largely reflected in the oxygen-isotope record. A decline in thermophilic chironomids and a rise in cold-adapted taxa after 13,180 yr BP suggest a response to cooling at the beginning of the Gerzensee Oscillation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sub-fossil Cladocera were studied in a core from Gerzensee (Swiss Plateau) for the late-glacial periods of Oldest Dryas, Bølling, and Allerød. Cladocera assemblages were dominated by cold-tolerant littoral taxa Chydorus sphaericus, Acroperus harpae, Alonella nana, Alona affinis, and Alonella excisa. The rapid warming at the beginning of the Bølling (GI-1e) ca. 14,650 yr before present (BP: before AD 1950) was indicated by an abrupt 2‰ shift in carbonate δ18O and a clear change in pollen assemblages. Cladocera assemblages, in contrast, changed more gradually. C. sphaericus and A. harpae are the most cold-tolerant, and their abundance was highest in the earliest part of the record. Only 150–200 years after the beginning of the Bølling warming we observed an increase in less cold-tolerant A. excisa and A. affinis. The establishment of Alona guttata, A. guttata var. tuberculata, and Pleuroxus unicatus was delayed by ca. 350, 770, and 800 years respectively after the onset of the Bølling. The development of the Cladocera assemblages suggests increasing water temperatures during the Bølling/Allerød, which agrees with the interpretation by von Grafenstein et al. (2013-this issue) that decreasing δ18O values in carbonates in this period reflect increasing summer water temperatures at the sediment–water interface. Other processes also affected the Cladocera community, including the development and diversification of aquatic vegetation favourable for Cladocera. The record is clearly dominated by Chydoridae, as expected for a littoral core. Yet, the planktonic Eubosmina-group occurred throughout the core, with the exception of a period at ca. 13,760–13,420 yr BP. Lake levels reconstructed for this period are relatively low, indicating that the littoral location might have become too shallow for Eubosmina in that period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predicting the response of species to environmental changes is a great and on-going challenge for ecologists, and this requires a more in-depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities’ responses to global environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>1. Proliferative kidney disease (PKD) is a disease of salmonid fish caused by the endoparasitic myxozoan, Tetracapsuloides bryosalmonae, which uses freshwater bryozoans as primary hosts. Clinical PKD is characterised by a temperature-dependent proliferative and inflammatory response to parasite stages in the kidney.;2. Evidence that PKD is an emerging disease includes outbreaks in new regions, declines in Swiss brown trout populations and the adoption of expensive practices by fish farms to reduce heavy losses. Disease-related mortality in wild fish populations is almost certainly underestimated because of e.g. oversight, scavenging by wild animals, misdiagnosis and fish stocking.;3. PKD prevalences are spatially and temporally variable, range from 0 to 90-100% and are typically highest in juvenile fish.;4. Laboratory and field studies demonstrate that (i) increasing temperatures enhance disease prevalence, severity and distribution and PKD-related mortality; (ii) eutrophication may promote outbreaks. Both bryozoans and T. bryosalmonae stages in bryozoans undergo temperature- and nutrient-driven proliferation.;5. Tetracapsuloides bryosalmonae is likely to achieve persistent infection of highly clonal bryozoan hosts through vertical transmission, low virulence and host condition-dependent cycling between covert and overt infections. Exploitation of fish hosts entails massive proliferation and spore production by stages that escape the immune response. Many aspects of the parasite's life cycle remain obscure. If infectious stages are produced in all hosts then the complex life cycle includes multiple transmission routes.;6. Patterns of disease outbreaks suggest that background, subclinical infections exist under normal environmental conditions. When conditions change, outbreaks may then occur in regions where infection was hitherto unsuspected.;7. Environmental change is likely to cause PKD outbreaks in more northerly regions as warmer temperatures promote disease development, enhance bryozoan biomass and increase spore production, but may also reduce the geographical range of this unique multihost-parasite system. Coevolutionary dynamics resulting from host-parasite interactions that maximise fitness in previous environments may pose problems for sustainability, particularly in view of extensive declines in salmonid populations and degradation of many freshwater habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coevolution of parental investment and offspring solicitation is driven by partly different evolutionary interests of genes expressed in parents and their offspring. In species with biparental care, the outcome of this conflict ma!: be influenced by the sexual conflict over parental investment, Models for the resolution of such family conflicts have made so far untested assumptions about genetic variation and covariation in the parental resource provisioning response and the level of offspring solicitation. Using a combination of cross-fostering and begging playback experiments, we show that, in the great tit (Parus major), (i) the begging call intensity of nestlings depends on their common origin, suggesting genetic variation for this begging display, (ii) only mothers respond to begging calls by increased food provisioning, and (iii! the size of the parental response is positively related to the begging call intensity of nestlings in the maternal but not paternal line. This study indicates that genetic covariation, its differential expression in the maternal and paternal lines and/or early environmental and parental effects need to be taken into account when predicting the phenotypic outcome of the conflict over investment between genes expressed in each parent and the offspring. [References: 36]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of waterproofing spray toxicity. More efficient preventive measures are needed prior to the marketing and distribution of new waterproofing agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents new paleoenvironmental data obtained from sedimentary cores from Lago Fagnano, an elon- gated lake located at 54°S in southernmost South America. Data from palynomorphs (pollen, spores and algae) and associated palynofacies as well as from diatom taxa retrieved from these cores compared with other regional proxies contribute to evaluate the similarities and differences in the climate patterns based on different proxies from southernmost Patagonia. The pollen analysis reveals that a grass steppe environment existed during the early Holocene (11,300–~8000 cal a BP) followed by a major vegetation change characterized by development of forest-steppe ecotone communities between ~8000 and ~6500 cal a BP, under more humid conditions. Between ~ 6500 and ~ 4000 cal a BP, expansion and colonization by Nothofagus forests reflect an increase in effec- tive moisture levels, while openness in the forest communities characterizes the region after ~ 1100 cal a BP. The palynological organic matter combined with the algal content reflects hydrological changes occurring in the lake and its nutrient status, probably in close relation with past climate oscillations. All these past ecological changes are closely related to oscillations in precipitation and temperature as a response to the variations in the latitudinal position and/or strength of the Southern Westerlies wind belt during the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Drought is one of the most significant factors that limit plant productivity. Oxidative stress is a secondary event in many unfavorable environmental conditions. Intracellular proteases have a role in the metabolism reorganisation and nutrient remobilization under stress. In order to under stand the relative significance of oxidative stress and proteolysis in the yield reduction under drought, four varieties of Triticum aestivum L. with different field drought resistance were examined. Methods: A two-year field experiment was conducted. Analyses were performed on the upper most leaf of control plants and plants under water deficitat the stages most critical for yield reduction under drought (from jointing till milk ripeness). Leaf water deficit and electrolyte leakage, malondyaldehyde level, activities and isoenzymes of superoxide dismutase, catalase and peroxidase, leaf protein content and proteolytic activity were studied. Yield components were analyzed. Results: A general trend of increasing the membrane in stability and accumulation of lipid hydroperoxides was observed with some differences among varieties, especially under drought. The anti-oxidative enzyme activities were progressively enhanced, as well as the azocaseinolytic activities. The leaf protein content decreased under drought at the last phase. Differences among varieties were observed in the parameters under study. They were compared to yield components` reduction under water deprivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous syntheses on the effects of environmental conditions on the outcome of plant-plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities to: (i) test how important are facilitative interactions as a driver of community structure, (ii) evaluate whether we can predict the frequency of positive plant-plant interactions across differing environmental conditions and habitats, and (iii) assess whether thresholds in the response of plant-plant interactions to environmental gradients exists between ``moderate'' and ``extreme'' environments. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environmental conditions relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and chyland areas, illustrating the high importance of positive plant-plant interactions for the maintenance of plant diversity in these environments. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dtyland communities decreased globally with water scarcity or temperature annual range. Positive facilitation-drought stress relationships are more likely in shorter regional gradients, but these relationships are obscured in regions with a greater species turnover or with complex environmental gradients. By showing the different climatic drivers and behaviors of plant-plant interactions in dryland and alpine areas, our results will improve predictions regarding the effect of facilitation on the assembly of plant communities and their response to changes in environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes.