15 resultados para environmental effects
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Despite the many proposed advantages related to nanotechnology, there are increasing concerns as to the potential adverse human health and environmental effects that the production of, and subsequent exposure to nanoparticles (NPs) might pose. In regard to human health, these concerns are founded upon the plethora of knowledge gained from research relating to the effects observed following exposure to environmental air pollution. It is known that increased exposure to environmental air pollution can cause reduced respiratory health, as well as exacerbate pre-existing conditions such as cardiovascular disease and chronic obstructive pulmonary disease. Such disease states have also been associated with exposure to the NP component contained within environmental air pollution, raising concerns as to the effects of NP exposure. It is not only exposure to accidentally produced NPs however, which should be approached with caution. Over the past decades, NPs have been specifically engineered for a wide range of consumer, industrial and technological applications. Due to the inevitable exposure of NPs to humans, owing to their use in such applications, it is therefore imperative that an understanding of how NPs interact with the human body is gained. In vivo research poses a beneficial model for gaining immediate and direct knowledge of human exposure to such xenobiotics. This research outlook however, has numerous limitations. Increased research using in vitro models has therefore been performed, as these models provide an inexpensive and high-throughput alternative to in vivo research strategies. Despite such advantages, there are also various restrictions in regard to in vitro research. Therefore, the aim of this review, in addition to providing a short perspective upon the field of nanotoxicology, is to discuss (1) the advantages and disadvantages of in vitro research and (2) how in vitro research may provide essential information pertaining to the human health risks posed by NP exposure.
Resumo:
Fish populations are increasingly being subjected to anthropogenic changes to their sensory environments. The impact of these changes on inter- and intra-specific communication, and its evolutionary consequences, has only recently started to receive research attention. A disruption of the sensory environment is likely to impact communication, especially with respect to reproductive interactions that help to maintain species boundaries. Aquatic ecosystems around the world are being threatened by a variety of environmental stressors, causing dramatic losses of biodiversity and bringing urgency to the need to understand how fish respond to rapid environmental changes. Here, we discuss current research on different communication systems (visual, chemical, acoustic, electric) and explore the state of our knowledge of how complex systems respond to environmental stressors using fish as a model. By far the bulk of our understanding comes from research on visual communication in the context of mate selection and competition for mates, while work on other communication systems is accumulating. In particular, it is increasingly acknowledged that environmental effects on one mode of communication may trigger compensation through other modalities. The strength and direction of selection on communication traits may vary if such compensation occurs. However, we find a dearth of studies that have taken a multimodal approach to investigating the evolutionary impact of environmental change on communication in fish. Future research should focus on the interaction between different modes of communication, especially under changing environmental conditions. Further, we see an urgent need for a better understanding of the evolutionary consequences of changes in communication systems on fish diversity.
Resumo:
Rapid morphological changes in response to fluctuating natural environments are a common phenomenon in species that undergo adaptive radiation. The dramatic ecological changes in Lake Victoria provide a unique opportunity to study environmental effects on cichlid morphology. This study shows how four haplochromine cichlids adapted their premaxilla to a changed diet over the past 30 years. Directly after the diet change toward larger and faster prey in the late 1980s, the premaxilla (upper jaw) changed in a way that is in agreement with a more food manipulating feeding style. During the 2000s, two zooplanktivorous species showed a reversal of morphological changes after returning to their original diet, whereas two other species showed no reversal of diet and morphology. These rapid changes indicate a potential for extremely fast adaptive responses to environmental fluctuations, which are likely inflicted by competition release and increase, and might have a bearing on the ability of haplochromines to cope with environmental changes. These responses could be due to rapid genetic change or phenotypic plasticity, for which there is ample evidence in cichlid fish structures associated with food capture and processing. These versatile adaptive responses are likely to have contributed to the fast adaptive radiation of haplochromines.
Resumo:
The dynamics of the two alkali metals sodium and cesium in crop plants are relevant in an ecological context. Redistribution processes for these elements in young wheat plants were investigated in the work reported here. Two days old wheat plants (Triticum aestivum L. cv. Arina) were fed for 24 h with sodium‐22 (22Na) and cesium‐134 (134Cs) via the main root and incubated afterwards in a culture room. Cesium‐134 accumulated in newly formed parts of the main root and in the expanding leaves during the first 20 days after labeling, while 22Na accumulated transiently in these plant parts, reached a peak and declined after a few days. A high percentage of 22Na was released from the roots to the medium. Total Na in leaves also accumulated transiently, but its highest accumulation appeared later than the peak of 22Na. Therefore, the distribution and retranslocation processes differ considerably for sodium and cesium in wheat plants. Such differences must be considered for the evaluation of environmental effects (e.g., release of pollutants into the environment) on the quality of harvested cereal products.
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
BACKGROUND: Environment and genetics influence the manifestation of recurrent airway obstruction (RAO), but the associations of specific factors with mild, moderate, and severe clinical signs are unknown. HYPOTHESIS: We hypothesized that sire, feed, bedding, time outdoors, sex, and age are associated with clinical manifestations of mild, moderate, and severe lower airway disease. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (F1S1, n = 172; F1S2, n = 135); maternal half-siblings of F1S1 (mHSS1, n = 66); and an age-matched, randomly chosen control group (CG, n = 33). METHODS: A standardized questionnaire was used to assess potential risk factors and to establish a horse owner assessed respiratory signs index (HOARSI 1-4, from healthy to severe) according to clinical signs of lower airway disease. RESULTS: More F1S1 and F1S2 horses showed moderate to severe clinical signs (HOARSI 3 and HOARSI 4 combined, 29.6 and 27.3%, respectively) compared with CG and mHSS1 horses (9.1 and 6.2%, respectively; contingency table overall test, P < .001). Sire, hay feeding, and age (in decreasing order of strength) were associated with more severe clinical signs (higher HOARSI), more frequent coughing, and nasal discharge. CONCLUSIONS AND CLINICAL RELEVANCE: There is a genetic predisposition and lesser but also marked effects of hay feeding and age on the manifestation of moderate to severe clinical signs, most markedly on coughing frequency. In contrast, mild clinical signs were not associated with sire or hay feeding in our populations.
Resumo:
Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.
Resumo:
When kept in barren and restrictive cages, animals frequently develop stereotypic behaviour patterns that are characterized by high repetition rates, conspicuous invariance and an apparent lack of function. Although millions of animals are affected, the underlying causes and mechanisms are still unclear. Growing evidence suggests that cage-induced stereotypies may reflect pathological dysfunction within basal ganglia circuitry expressed by perseverative behaviour. In order to assess whether variation in stereotypy performance and variation in perseverative behaviour may have a common cause in ICR CD-1 mice, we assessed the effects of environmental enrichment on both phenomena. We raised 48 female ICR CD-1 mice in standard or enriched cages from three weeks to either 6 or 11 months of age and measured stereotypy level in the home cage and perseveration on an extinction task. We further examined whether enriched rearing conditions (early enrichment) protect mice from the developing stereotypies later in life and whether stereotypies developed in barren cages would persist in an enriched environment (late enrichment) by transferring standard mice to enriched cages and vice versa for 14 weeks after completion of the extinction task. We found no evidence for a causal relation between stereotypy and perseveration in mice. However, transfer to enriched cages reduced stereotypy levels significantly both at 6 and 11 months of age indicating that stereotypies had not become established yet. Finally, we found that removing enrichments at both ages did not induce higher stereotypy levels, thereby confirming earlier reports of a neuroprotective effect of early enrichment.