25 resultados para ensemble de niveau
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential Transient measurements. These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). While the type-I suppressor selectively forms efficient barriers for copper inter-diffusion on chloride-terminated electrode surfaces we identified a type-II suppressor that interacts non-selectively with any kind of anions chemisorbed on copper (chloride, sulfate, sulfonate). Type-I suppressors are vital for the superconformal copper growth mode in Damascene processing and show an antagonistic interaction with SPS (Bis-Sodium-Sulfopropyl-Disulfide) which involves the deactivation of this suppressor chemistry. This suppressor deactivation is rationalized in terms of compositional changes in the layer of the chemisorbed anions due to the competition of chloride and MPS (Mercaptopropane Sulfonic Acid) for adsorption sites on the metallic copper surface. MPS is the product of the dissociative SPS adsorption within the preexisting chloride matrix on the copper surface. The non-selectivity in the adsorption behavior of the type-II suppressor is rationalized in terms of anion/cation pairing effects of the poly-cationic suppressor and the anion-modified copper substrate. Atomic-scale insights into the competitive Cl/MPS adsorption are gained from in situ STM (Scanning Tunneling Microscopy) using single crystalline copper surfaces as model substrates. Type-III suppressors are a third class of suppressors. In case of type-land type-II suppressor chemistries the resulting steady-state deposition conditions are completely independent on the particular succession of additive adsorption. In contrast to that a strong dependence of the suppressing capabilities on the sequence of additive adsorption ("first comes, first serves" principle) is observed for the type-IIIsuppressor. This behavior:is explained by a suppressor barrier that impedes not only the copper inter-diffusion but also the transport of other additives (e.g. SPS) to the copper surface. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Climate change is expected to profoundly influence the hydrosphere of mountain ecosystems. The focus of current process-based research is centered on the reaction of glaciers and runoff to climate change; spatially explicit impacts on soil moisture remain widely neglected. We spatio-temporally analyzed the impact of the climate on soil moisture in a mesoscale high mountain catchment to facilitate the development of mitigation and adaptation strategies at the level of vegetation patterns. Two regional climate models were downscaled using three different approaches (statistical downscaling, delta change, and direct use) to drive a hydrological model (WaSiM-ETH) for reference and scenario period (1960–1990 and 2070–2100), resulting in an ensemble forecast of six members. For all ensembles members we found large changes in temperature, resulting in decreasing snow and ice storage and earlier runoff, but only small changes in evapotranspiration. The occurrence of downscaled dry spells was found to fluctuate greatly, causing soil moisture depletion and drought stress potential to show high variability in both space and time. In general, the choice of the downscaling approach had a stronger influence on the results than the applied regional climate model. All of the results indicate that summer soil moisture decreases, which leads to more frequent declines below a critical soil moisture level and an advanced evapotranspiration deficit. Forests up to an elevation of 1800 m a.s.l. are likely to be threatened the most, while alpine areas and most pastures remain nearly unaffected. Nevertheless, the ensemble variability was found to be extremely high and should be interpreted as a bandwidth of possible future drought stress situations.
Resumo:
To increase the sparse knowledge of long-term Southern Hemisphere (SH) climate variability, we assess an ensemble of 4 transient simulations over the last 500 yr performed with a state-of-the-art atmosphere ocean general circulation model. The model is forced with reconstructions of solar irradiance, greenhouse gas (GHG) and volcanic aerosol concentrations. A 1990 control simulation shows that the model is able to represent the Southern Annular Mode (SAM), and to some extent the South Pacific Dipole (SPD) and the Zonal Wave 3 (ZW3). During the past 500 yr we find that SPD and ZW3 variability remain stable, whereas SAM shows a significant shift towards its positive state during the 20th century. Regional temperatures over South America are strongly influenced by changing both GHG concentrations and volcanic eruptions, whereas precipitation shows no significant response to the varying external forcing. For temperature this stands in contrast to proxy records, suggesting that SH climate is dominated by internal variability rather than external forcing. The underlying dynamics of the temperature changes generally point to a combination of several modes, thus, hampering the possibilities of regional reconstructing the modes from proxy records. The linear imprint of the external forcing is as expected, i.e. a warming for increase in the combined solar and GHG forcing and a cooling after volcanic eruptions. Dynamically, only the increase in SAM with increased combined forcing is simulated.
Resumo:
The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed.