57 resultados para enforced disappearance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Non-invasive pulse spectrophotometry to measure indocyanine green (ICG) elimination correlates well with the conventional invasive ICG clearance test. Nevertheless, the precision of this method remains unclear for any application, including small-for-size liver remnants. We therefore measured ICG plasma disappearance rate (PDR) during the anhepatic phase of orthotopic liver transplantation using pulse spectrophotometry. Measurements were done in 24 patients. The median PDR after exclusion of two outliers and two patients with inconstant signal was 1.55%/min (95% confidence interval [CI]=0.8-2.2). No correlation with patient age, gender, body mass, blood loss, administration of fresh frozen plasma, norepinephrine dose, postoperative albumin (serum), or difference in pre and post transplant body weight was detected. In conclusion, we found an ICG-PDR different from zero in the anhepatic phase, an overestimation that may arise in particular from a redistribution into the interstitial space. If ICG pulse spectrophotometry is used to measure functional hepatic reserve, the verified average difference from zero (1.55%/min) determined in our study needs to be taken into account.
Resumo:
The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst.) events are expected to be detected and only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors, normal mass hierarchy and θ23≤π/4 yields a best-fit mixing angle sin2(2θ23)=1.000 and mass splitting |Δm232|=2.44×10−3 eV2/c4. If θ23≥π/4 is assumed, the best-fit mixing angle changes to sin2(2θ23)=0.999 and the mass splitting remains unchanged.
Resumo:
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ 23 . Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10 20 protons on target, T2K has fit the energy-dependent ν μ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin 2 (θ 23 ) is 0.514 +0.055 −0.056 (0.511±0.055 ), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm 2 32 =(2.51±0.10)×10 −3 eV 2 /c 4 (inverted hierarchy: Δm 2 13 =(2.48±0.10)×10 −3 eV 2 /c 4 ). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.
Resumo:
Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactification radius, equivalent to a high temperature in the thermal theory where antiperiodic fermion boundary conditions are applied. Periodic fermion boundary conditions, on the other hand, are related to the Witten index and confinement is expected to persist independently of the length of the compactified dimension. We study this aspect with lattice Monte Carlo simulations for different values of the fermion mass parameter that breaks supersymmetry softly. We find a deconfined region that shrinks when the fermion mass is lowered. Deconfinement takes place between two confined regions at large and small compactification radii, that would correspond to low and high temperatures in the thermal theory. At the smallest fermion masses we find no indication of a deconfinement transition. These results are a first signal for the predicted continuity in the compactification of supersymmetric Yang-Mills theory.
Resumo:
We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy: sin²θ₂₃= 0.514+0.055−0.056 and ∆m²_32 = (2.51 ± 0.10) × 10⁻³ eV²/c⁴ Inverted Hierarchy: sin²θ₂₃= 0.511 ± 0.055 and ∆m²_13 = (2.48 ± 0.10) × 10⁻³ eV²/c⁴ The analysis accounts for multi-nucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters, |∆m^2|, sin²θ₂₃, sin²θ₁₃, δCP , and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region δCP = [0.15, 0.83]π for normal hierarchy and δCP = [−0.08, 1.09]π for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes Factor of 2.2. The most probable values and 68% 1D credible intervals for the other oscillation parameters, when reactor data are included, are: sin²θ₂₃= 0.528+0.055−0.038 and |∆m²_32| = (2.51 ± 0.11) × 10⁻³ eV²/c⁴.
Resumo:
In this groundbreaking book Christian Gerlach traces the social roots of the extraordinary processes of human destruction involved in mass violence throughout the twentieth century. He argues that terms such as 'genocide' and 'ethnic cleansing' are too narrow to explain the diverse motives and interests that cause violence to spread in varying forms and intensities. From killings and expulsions to enforced hunger, collective rape, strategic bombing, forced labour and imprisonment he explores what happened before, during, and after periods of widespread bloodshed in countries such as Armenia, Indonesia, Bangladesh, Nazi-occupied Greece and in anti-guerilla wars worldwide in order to highlight the crucial role of socio-economic pressures in the generation of group conflicts. By focussing on why so many different people participated in or supported mass violence, and why different groups were victimized, he offers us a new way of understanding one of the most disturbing phenomena of our times.
Resumo:
Solid organ transplant recipients (SOTR) have an increased risk of skin cancer due to their long-term immunosuppressive state. As the number of these patients is increasing, as well as their life expectancy, it is important to discuss the screening and management of skin cancer in this group of patients. The role of the dermatologist, in collaboration with the transplant team, is important both before transplantation, where patients are screened for skin lesions and the individual risk for skin cancer development is assessed, and after transplantation. Posttransplant management consists of regular dermatological consultations (the frequency depends on different factors discussed below), where early skin cancer screening and management, as well as patient education on sun protective behavior is taught and enforced. Indeed, SOTR are very sensitive to sun damage due to their immunosuppressive state, leading to cumulative sun damage which results in field cancerization with numerous lesions such as in situ squamous cell carcinoma, actinic keratosis and Bowen's disease. These lesions should be recognized and treated as early as possible. Therapeutic options discussed will involve topical therapy, surgical management, adjustment of the patient's immunosuppressive therapy (i.e. reduction of immunosuppression and/or switch to mammalian target of rapamycin inhibitors) and chemoprevention with the retinoid acitretin, which reduces the recurrence rate of squamous cell carcinoma. The dermatological follow-up of SOTR should be integrated into the comprehensive posttransplant care.
Resumo:
In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.
Resumo:
Autophagy-related gene (Atg) 5 is a gene product required for the formation of autophagosomes. Here, we report that Atg5, in addition to the promotion of autophagy, enhances susceptibility towards apoptotic stimuli. Enforced expression of Atg5-sensitized tumour cells to anticancer drug treatment both in vitro and in vivo. In contrast, silencing the Atg5 gene with short interfering RNA (siRNA) resulted in partial resistance to chemotherapy. Apoptosis was associated with calpain-mediated Atg5 cleavage, resulting in an amino-terminal cleavage product with a relative molecular mass of 24,000 (Mr 24K). Atg5 cleavage was observed independent of the cell type and the apoptotic stimulus, suggesting that calpain activation and Atg5 cleavage are general phenomena in apoptotic cells. Truncated Atg5 translocated from the cytosol to mitochondria, associated with the anti-apoptotic molecule Bcl-xL and triggered cytochrome c release and caspase activation. Taken together, calpain-mediated Atg5 cleavage provokes apoptotic cell death, therefore, represents a molecular link between autophagy and apoptosis--a finding with potential importance for clinical anticancer therapies.
Resumo:
A modified uvulopalatopharyngoplasty (UPPP) was carried out between January 1992 and December 2003 at the ENT Department of the Inselspital in Bern in 146 patients with habitual or complicated rhonchopathy. The operation consisted of a classical tonsillectomy or residual tonsil resection and additional shortening of the uvula. The natural mucosal fold between the uvula and the upper pole of the tonsils was carefully preserved. A wide opening to the rhinopharynx was created by asymmetric suturing of the glossopalantine and pharyngopalatine arches. A retrospective questionnaire with regard to rhonchopathy, phases of apnea, daytime drowsiness, obstruction of nasal breathing, long-term complications and patient satisfaction was used to evaluate the short-term and long-term effectiveness of the modified UPPP as well as the incidence of adverse side effects. Complete postoperative courses were evaluated in 116 patients. Surgical complications were restricted to one case with postoperative hemorrhage. A velum insufficiency or postoperative rhinopharyngeal stenosis did not occur. Eighty-three patients (72%) confirmed a persistent suppression or substantial improvement of the rhonchopathy. Disappearance or decrease of sleep apnea was confirmed in 12 (63%) out of 19 postoperative polysomnographic follow-up investigations. Long-term complications occurred in a total of 27 (23%) of 116 patients. They were confined to minor problems such as dryness of the mouth (n = 12), slight difficulty in swallowing (n = 7), discrete speech disturbances (n = 1), and slight pharyngeal dysesthesias (n = 7) with feeling of a lump in the throat and compulsive clearing of the throat. Eighty-five patients (73%) reported that they were satisfied with the postoperative result even several years after the operation. Looking back, 31 patients (27%) would no longer have the operation performed. The inadequate result of the rhonchopathy was specified as the reason by 21 patients. Ten patients had unpleasant memories of the operation because of intensive postoperative pain. Snoring and apneic phases are suppressed or improved by non-traumatic UPPP in the majority of patients. This effect persisted even years after the operation.
Resumo:
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73beta and DeltaNp63alpha, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.
Resumo:
Tissue engineering strategies are gathering clinical momentum in regenerative medicine and are expected to provide excellent opportunities for therapy for difficult-to-treat human pathologies. Being aware of the requirement to produce larger artificial tissue implants for clinical applications, we used microtissues, produced using gravity-enforced self-assembly of monodispersed primary cells, as minimal tissue units to generate scaffold-free vascularized artificial macrotissues in custom-shaped agarose molds. Mouse myoblast, pig and human articular-derived chondrocytes, and human myofibroblast (HMF)-composed microtissues (microm3 scale) were amalgamated to form coherent macrotissue patches (mm3 scale) of a desired shape. Macrotissues, assembled from the human umbilical vein endothelial cell (HUVEC)-coated HMF microtissues, developed a vascular system, which functionally connected to the chicken embryo's vasculature after implantation. The design of scaffold-free vascularized macrotissues is a first step toward the scale-up and production of artificial tissue implants for future tissue engineering initiatives.