15 resultados para energy and resources
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.
Resumo:
The low-energy β− emitter 161Tb is very similar to 177Lu with respect to half-life, beta energy and chemical properties. However, 161Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to 177Lu. It also emits low-energy photons that are useful for gamma camera imaging. The 160Gd(n,γ)161Gd→161Tb production route was used to produce 161Tb by neutron irradiation of massive 160Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) 161Tb from the bulk of the 160Gd target and from its stable decay product 161Dy. 161Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. 177Lu. A 161Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of 161Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%–90% of the available 161Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The 161Tb obtained was of the quality required to prepare 161Tb–DOTA-Tyr3-octreotate. We were able to produce 161Tb in n.c.a. form by irradiating highly enriched 160Gd targets; it can be obtained in the quantity and quality required for the preparation of 161Tb-labeled therapeutic agents.
Resumo:
Will die Schweiz mit unilateralen energie- und klimapolitischen Massnahmen ambitionierte Ziele verfolgen, dann erfahren energieintensive Sektoren Nachteile im internationalen Wett- bewerb. Produktionsverlagerungen und „carbon leakage“ sind die Folgen, was nicht im Sinne der Schweizer Wirtschaft und der globalen Klimaziele ist. Mit Grenzausgleichsmassnahmen (BAM) kann die Schweiz ihre energieintensiven Betriebe nicht vor internationalen Wettbe- werbsnachteilen schützen. Weiter kommt hinzu, dass die Einführung von BAM aus rechtli- cher Sicht „riskant“ ist und bei einem Schweizer Alleingang mit hohen Vollzugshürden ge- rechnet werden muss. Für die Schweiz macht eine Einführung von BAM nur im Rahmen ei- ner grösseren Klimakoalition Sinn (bspw. zusammen mit der EU). Alternativen zu BAM sind die einfacher und autonom umsetzbaren Ausnahmeregelungen für energieintensive Betriebe oder Output-based-allocation-Systeme.
Resumo:
DNA can serve as a versatile scaffold for chromophore assemblies. For example, light-harvesting antennae have been realized by incorporating phenanthrene and pyrene building blocks into DNA strands. It was shown that by exciting at 320 nm (absorption of phenanthrene), an emission at 450 nm is observed which corresponds to a phenanthrene-pyrene exciplex. The more phenanthrenes are added into the DNA duplex, the higher is the fluorescence intensity with no significant change in quantum yield. This shows that phenanthrene acts as a donor and efficiently transfers the excitation energy to the pyrene. Up to now, the mechanism of this energy transfer and exciplex formation is not known. Therefore, we first aim at studying the photo-cycle of such DNA assemblies through transient absorption spectroscopy. Based on the results, we will explore ways to manipulate the energy transfer by application of intense THz fields. Ground as well as excited state Stark effect dynamics will be investigated.
Resumo:
Estimates show that fossil fuel subsidies average USD 400–600 billion annually worldwide while renewable energy (RE) subsidies amounted to USD 66 billion in 2010 and are predicted to rise to USD 250 billion annually by 2035. Domestic political rationales for energy subsidies include promoting innovation, job creation and economic growth, energy security, and independence. Energy subsidies may also serve social and environmental goals. Whether and to what extent subsidies are effective to achieve these goals or instead lead to market distortions is a matter of much debate and the trade effects of energy subsidies are complex. This paper offers an overview of the types of energy subsidies that are used in the conventional and renewable energy sectors, and their relationship with climate change, in particular greenhouse gas emissions. While the WTO’s Agreement on Subsidies and Countervailing Measures (ASCM) is mostly concerned with harm to competitors, this paper considers the extent to which the Agreement could also discipline subsidies that cause harm to the environment as a global common. Beyond the existing legal framework, this paper surveys a number of alternatives for improving the ability of subsidies disciplines to internalize climate change costs of energy production and consumption. One option is a new multilateral agreement on subsidies or trade remedies (with an appropriate carve-out in the WTO regime to allow for it if such an agreement is concluded outside it). Alternatively, climate change-related subsidies could be included as part of another multilateral regime or as part of regional agreements. A third approach would be to incorporate rules on energy subsidies in sectorial agreements, including a Sustainable Energy Trade Agreement such as has been proposed in other ICTSD studies.
Resumo:
Fatal falls from great height are a frequently encountered setting in forensic pathology. They present--by virtue of a calculable energy transmission to the body--an ideal model for the assessment of the effects of blunt trauma to a human body. As multislice computed tomography (MSCT) has proven not only to be invaluable in clinical examinations, but also to be a viable tool in post-mortem imaging, especially in the field of osseous injuries, we performed a MSCT scan on 20 victims of falls from great height. We hereby detected fractures and their distributions were compared with the impact energy. Our study suggests a marked increase of extensive damage to different body regions at about 20 kJ and more. The thorax was most often affected, regardless of the amount of impacting energy and the primary impact site. Cranial fracture frequency displayed a biphasic distribution with regard to the impacting energy; they were more frequent in energies of less than 10, and more than 20 kJ, but rarer in the intermediate energy group, namely that of 10-20 kJ.
Resumo:
Endogenous development is defined as development that values primarily locally available resources and the way people organized themselves for that purpose. It is a dynamic and evolving concept that also embraces innovations and complementation from other than endogenous sources of knowledge; however, only as far as they are based on mutual respect and the recognition of cultural and socioeconomic self-determination of each of the parties involved. Experiences that have been systematized in the context of the BioAndes Program are demonstrating that enhancing food security and food sovereignty on the basis of endogenous development can be best achieved by applying a ‘biocultural’ perspective: This means to promote and support actions that are simultaneously valuing biological (fauna, flora, soils, or agrobiodiversity) and sociocultural resources (forms of social organization, local knowledge and skills, norms, and the related worldviews). In Bolivia, that is one of the Latin-American countries with the highest levels of poverty (79% of the rural population) and undernourishment (22% of the total population), the Program BioAndes promotes food sovereignty and food security by revitalizing the knowledge of Andean indigenous people and strengthening their livelihood strategies. This starts by recognizing that Andean people have developed complex strategies to constantly adapt to highly diverse and changing socioenvironmental conditions. These strategies are characterized by organizing the communities, land use and livelihoods along a vertical gradient of the available eco-climatic zones; the resulting agricultural systems are evolving around the own sociocultural values of reciprocity and mutual cooperation, giving thus access to an extensive variety of food, fiber and energy sources. As the influences of markets, competition or individualization are increasingly affecting the life in the communities, people became aware of the need to find a new balance between endogenous and exogenous forms of knowledge. In this context, BioAndes starts by recognizing the wealth and potentials of local practices and aims to integrate its actions into the ongoing endogenous processes of innovation and adaptation. In order to avoid external impositions and biases, the program intervenes on the basis of a dialogue between exogenous, mainly scientific, and indigenous forms of knowledge. The paper presents an analysis of the strengths and weaknesses of enhancing endogenous development through a dialogue between scientific and indigenous knowledge by specifically focusing on its effects on food sovereignty and food security in three ‘biocultural’ rural areas of the Bolivian highlands. The paper shows how the dialogue between different forms of knowledge evolved alongside the following project activities: 1) recuperation and renovation of local seeds and crop varieties (potato – Solanum spp., quinoa – Chenopodium quinoa, cañahua – Chenopodium pallidicaule); 2) support for the elaboration of community-based norms and regulations for governing access and distribution of non-timber forest products, such as medicinal, fodder, and construction plants; 3) revitalization of ethnoveterinary knowledge for sheep and llama breeding; 4) improvement of local knowledge about the transformation of food products (sheep-cheese, lacayote – Cucurbita sp. - jam, dried llama meat, fours of cañahua and other Andean crops). The implementation of these activities fostered the community-based livelihoods of indigenous people by complementing them with carefully and jointly designed innovations based on internal and external sources of knowledge and resources. Through this process, the epistemological and ontological basis that underlies local practices was made visible. On this basis, local and external actors started to jointly define a renewed concept of food security and food sovereignty that, while oriented in the notions of well being according to a collectively re-crafted world view, was incorporating external contributions as well. Enabling and hindering factors, actors and conditions of these processes are discussed in the paper.
Resumo:
A short paper for dissemination based on a research piece published by the E15Initiative: Subsidies, Clean Energy, and Climate Change, February 2015. Implemented jointly by ICTSD and the World Economic Forum, the E15Initiative convenes world-class experts and institutions to generate strategic analysis and recommendations for government, business, and civil society geared towards strengthening the global trade and investment system. The paper is also published in Spanish and Portuguese.
Resumo:
The problem of global security of energy supply is growing in importance. TTIP negotiations represent an opportunity to improve energy security in Europe and negotiate a legal framework for bilateral trade in energy, which could serve as a model for future negotiations at a multilateral level. This paper explores some of the thorniest legal, geopolitical, and economic issues that need to be taken up by TTIP negotiators for the promotion of a secure and sustainable trade in energy between the United States and European Union. It gives an account of the most recent developments in the TTIP negotiations on energy and examines the link between a possible legal framework for energy trade under TTIP and other energy-related regional and international fora. The paper critically assesses the negotiating positions of the European Union and the United States in light of their reciprocal energy profiles and needs. It offers an overview of the critical items most likely to be on top of the TTIP agenda on energy based on a comparative analysis of energy provisions in E.U. and U.S. legislation and in light of the both parties’ interests. Finally, it discusses the main driving forces and inhibiting factors capable of facilitating or rather impeding a successful conclusion of an energy trade deal between the United States and the European Union.