178 resultados para endothelial-cell
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Oligonucleotides capturing CD31 endothelial cells (= aptamer) were used for coating of intracoronary stents to improve endothelialization and vascular healing.
Resumo:
Sphingosine kinases (SKs) convert sphingosine to sphingosine 1-phosphate (S1P), which is a bioactive lipid that regulates a variety of cellular processes including proliferation, differentiation and migration.
Resumo:
A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown.
Resumo:
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Resumo:
Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage.
Resumo:
Antibody-mediated rejection (AMR) plays a significant role in cardiac allograft dysfunction, and recently a consensus regarding the diagnosis of AMR has been published. To our knowledge, it has not previously been reported that acute graft failure related to AMR, and antiendothelial cell antibodies can successfully be diagnosed to allow the patient to receive the outlined treatment and undergo a subsequent retransplantation.
Resumo:
VE-PTP, a receptor-type phosphotyrosine phosphatase, associates with the tyrosine kinase receptor Tie-2 and VE-cadherin and enhances the adhesive function of the latter. Here, VE-PTP was found to be restricted to endothelial cells, with a preference for arterial endothelium. Mutant mice expressing a truncated, secreted form of VE-PTP lacking the cytoplasmic and transmembrane domains and the most membrane-proximal extracellular fibronectin type III repeat, showed severe vascular malformations causing lethality at 10 days of gestation. Although blood vessels were initially formed, the intraembryonic vascular system soon deteriorated. Blood vessels in the yolk sac developed into dramatically enlarged cavities. In explant cultures of mutant allantoides, endothelial cells were found next to vessel structures growing as cell layers. No signs for enhanced endothelial apoptosis or proliferation were observed. Thus, the activity of VE-PTP is not required for the initial formation of blood vessels, yet it is essential for their maintenance and remodeling.
Resumo:
Sphingosine 1-phosphate (S1P) is a potent mitogenic signal generated from sphingosine by the action of sphingosine kinases (SKs). In this study, we show that in the human arterial endothelial cell line EA.hy 926 histamine induces a time-dependent upregulation of the SK-1 mRNA and protein expression which is followed by increased SK-1 activity. A similar upregulation of SK-1 is also observed with the direct protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). In contrast, SK-2 activity is not affected by neither histamine nor TPA. The increased SK-1 protein expression is due to stimulated de novo synthesis since cycloheximide inhibited the delayed SK-1 protein upregulation. Moreover, the increased SK-1 mRNA expression results from an increased promoter activation by histamine and TPA. In mechanistic terms, the transcriptional upregulation of SK-1 is dependent on PKC and the extracellular signal-regulated protein kinase (ERK) cascade since staurosporine and the MEK inhibitor U0126 abolish the TPA-induced SK-1 induction. Furthermore, the histamine effect is abolished by the H1-receptor antagonist diphenhydramine, but not by the H2-receptor antagonist cimetidine. Parallel to the induction of SK-1, histamine and TPA stimulate an increased migration of endothelial cells, which is prevented by depletion of the SK-1 by small interfering RNA (siRNA). To appoint this specific cell response to a specific PKC isoenzyme, siRNA of PKC-alpha, -delta, and -epsilon were used to selectively downregulate the respective isoforms. Interestingly, only depletion of PKC-alpha leads to a complete loss of TPA- and histamine-triggered SK-1 induction and cell migration. In summary, these data show that PKC-alpha activation in endothelial cells by histamine-activated H1-receptors, or by direct PKC activators leads to a sustained upregulation of the SK-1 protein expression and activity which, in turn, is critically involved in the mechanism of endothelial cell migration.
Resumo:
The endothelium, as an organ at the interface between the intra- and extravascular space, actively participates in maintaining an anti-inflammatory and anti-coagulant environment under physiological conditions. Severe humoral as well as cellular rejection responses, which accompany cross-species transplantation of vascularized organs as well as ischemia/reperfusion injury, primarily target the endothelium and disrupt this delicate balance. Activation of pro-inflammatory and pro-coagulant pathways often lead to irreversible injury not only of the endothelial layer but also of the entire graft, with ensuing rejection. This review focuses on strategies targeted at protecting the endothelium from such damaging effects, ranging from genetic manipulation of the donor organ to soluble, as well as membrane-targeted, protective strategies.
Resumo:
Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.
Resumo:
TIE2 is a vascular endothelial-specific receptor tyrosine kinase essential for the regulation of vascular network formation and remodeling. Previously, we have shown that the 1.2-kb 5' flanking region of the TIE2 promoter is capable of directing beta-galactosidase reporter gene expression specifically into a subset of endothelial cells (ECs) of transgenic mouse embryos. However, transgene activity was restricted to early embryonic stages and not detectable in adult mice. Herein we describe the identification and characterization of an autonomous endothelial-specific enhancer in the first intron of the mouse TIE2 gene. Furthermore, combination of the TIE2 promoter with an intron fragment containing this enhancer allows it to target reporter gene expression specifically and uniformly to virtually all vascular ECs throughout embryogenesis and adulthood. To our knowledge, this is the first time that an in vivo expression system has been assembled by which heterologous genes can be targeted exclusively to the ECs of the entire vasculature. This should be a valuable tool to address the function of genes during physiological and pathological processes of vascular ECs in vivo. Furthermore, we were able to identify a short region critical for enhancer function in vivo that contains putative binding sites for Ets-like transcription factors. This should, therefore, allow us to determine the molecular mechanisms underlying the vascular-EC-specific expression of the TIE2 gene.
Resumo:
Utilizing both the TET-OFF and TET-ON systems in combination with transcriptional control elements of the Tie-2 gene, we have established a series of transgenic activator and responder mice for TET-regulated endothelial cell-specific transgene expression in double transgenic mouse embryos and in adult mice. TET-regulated expression of LacZ reporter genes could be achieved in virtually all endothelia in mid gestation stage mouse embryos. In contrast in adult mice, using the very same Tie-2 tTA activator mouse strain, we observed striking differences of TET-induced gene expression from various inducible expression constructs in different vascular beds. Non-endothelial expression was never detected. The prominent differences in completeness of TET-induced endothelial expression highlight the still underestimated critical role of the responder mouse lines for uniform TET-induced gene expression in heterogeneous cell populations such as endothelial cells. Interestingly, in double transgenic mice inducibly expressing several different adhesion molecules, no adverse effects were observed even though these proteins were robustly expressed on endothelial cells in adult tissues. These transgenic model systems provide versatile tools for the TET-regulated manipulation of endothelial cell-specific gene expression in the entire embryonic vasculature and distinct vascular beds in adult mice.
Resumo:
Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.