14 resultados para employing organisations
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This publication is a collation and summary of the major achievements of the Agricultural Research Station of Cinzana (SRAC) and the Capacity Building for Sustainable Agriculture Project (PRECAD). Both projects, created in 1983 and 2006, respectively, have been developed through close collaboration between the Rural Economy Institute (IER) responsible for agricultural research in Mali and the Syngenta Foundation for Sustainable Agriculture (SFSA), formerly the Ciba-Geigy Foundation. The publication covers the period from 1979 to 2009 and includes, where available, some key information for the year 2010. It is aimed at a wide audience and provides an overview of the work carried out in Mali by an agricultural research station and an extension project. It highlights the obstacles and opportunities encountered by the SRAC and PRECAD, as well as the successes and difficulties arising from their work.
Resumo:
The European Commission’s proposals for the Legislative Framework of the Common Agricultural Policy (CAP) in the period 2014-2020 include, inter alia, the introduction of a “strong greening component”. For the first time, all EU farmers in receipt of support are to “go beyond the requirements of cross compliance and deliver environmental and climate benefits as part of their everyday activities crop diversification as a contribution to all EU farmers in receipt of support go beyond the requirements of cross compliance and deliver environmental and climate benefits as part of their everyday activities.” In a legal opinion prepared at the request of APRODEV, the Association of World Council of Churches related Development Organisations in Europe (www.aprodev.eu), Christian Häberli examines the WTO implications of this proposal, as compared with an alternative proposal to rather link direct payments to crop rotation. The conclusions are twofold: 1. Crop rotation is at least as likely to be found Green Box-compatible as crop diversification. Moreover, it will be more difficult to argue that crop diversification is “not more than minimally production-distorting” because it entails for most farmers less cost and work. 2. Even if (either of the two cropping schemes) were to be found “amber”, the EU would not have to relinquish this conditionality. This is because the direct payments involved would in all likelihood not, together with the other price support instruments, exceed the amount available under the presently scheduled maximum.
Resumo:
PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.
Resumo:
Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin-treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin-treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE.
Resumo:
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.