3 resultados para emission spectrum

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). METHODS A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. RESULTS Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P < 0.0001). Fluorescence lifetimes increased with age. CONCLUSIONS The FLIO allows reproducible measurements of fluorescence lifetimes of the macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around ∼800 nm , emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm . The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+ , Yb3+ , Er3+ , Ho3+ , and Tm3+ .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give next-to-next-to-leading order (NNLO) predictions for the Higgs production cross section at large transverse momentum in the threshold limit. Near the partonic threshold, all radiation is either soft or collinear to the final state jet which recoils against the Higgs boson. We find that the real emission corrections are of moderate size, but that the virtual corrections are large. We discuss the origin of these corrections and give numerical predictions for the transverse-momentum spectrum. The threshold result is matched to the known NLO result and implemented in the public code PeTeR.