43 resultados para elliptic curve cryptography
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that $v_2(\pi^+) < v_2(\pi^-)$ (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced $v_2$ splitting and its centrality dependence. We compare the results with the available experimental data.
Resumo:
The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.
Resumo:
This is a retrospective clinical, radiological and patient outcome assessment of 21 consecutive patients with King 1 idiopathic adolescent scoliosis treated by short anterior selective fusion of the major thoracolumbar/lumbar (TL/L) curve. Three-dimensional changes of both curves, changes in trunk balance and rib hump were evaluated. The minimal follow-up was 24 months (max. 83). The Cobb angle of the TL/L curve was 52 degrees (45-67 degrees) with a flexibility of 72% (40-100%). The average length of the main curve was 5 (3-8) segments. An average of 3 (2-4) segments was fused using rigid single rod implants with side-loading screws. The Cobb angle of the thoracic curve was 33 degrees (18-50 degrees) with a flexibility of 69% (29-100%). The thoracic curve in bending was less than 20 degrees in 17 patients, and 20-25 degrees in 4 patients. In the TL/L curve there was an improvement of the Cobb angle of 67%, of the apex vertebral rotation of 51% and of the apex vertebral translation of 74%. The Cobb angle of the thoracic curve improved 29% spontaneously. Shoulder balance improved significantly from an average preoperative imbalance of 14.5-3.1 mm at the last follow-up. Seventy-five percent of the patients with preoperative positive shoulder imbalance (higher on the side of the thoracic curve) had levelled shoulders at the last follow-up. C7 offset improved from a preoperative 19.8 (0-40) to 4.8 (0-18) mm at the last follow-up. There were no significant changes in rotation, translation of the thoracic curve and the clinical rib hump. There were no significant changes in thoracic kyphosis or lumbar lordosis. The average score of the SRS-24 questionnaire at the last follow-up was 91 points (max. 120). We conclude that short anterior selective fusion of the TL/L curve in King 1 scoliosis with a thoracic curve bending to 25 degrees or less (Type 5 according to Lenke classification) results in a satisfactory correction and a balanced spine. Short fusions leave enough mobile lumbar segments for the establishment of global spinal balance. A positive shoulder imbalance is not a contraindication for this procedure. Structural interbody grafts are not necessary to maintain lumbar lordosis.
Resumo:
It has been suggested that the shape of the normalized time-varying elastance curve [E(n)(t(n))] is conserved in different cardiac pathologies. We hypothesize, however, that the E(n)(t(n)) differs quantitatively after myocardial infarction (MI). Sprague-Dawley rats (n = 9) were anesthetized, and the left anterior descending coronary artery was ligated to provoke the MI. A sham-operated control group (CTRL) (n = 10) was treated without the MI. Two months later, a conductance catheter was inserted into the left ventricle (LV). The LV pressure and volume were measured and the E(n)(t(n)) derived. Slopes of E(n)(t(n)) during the preejection period (alpha(PEP)), ejection period (alpha(EP)), and their ratio (beta = alpha(EP)/alpha(PEP)) were calculated, together with the characteristic decay time during isovolumic relaxation (tau) and the normalized elastance at end diastole (E(min)(n)). MI provoked significant LV chamber dilatation, thus a loss in cardiac output (-33%), ejection fraction (-40%), and stroke volume (-30%) (P < 0.05). Also, it caused significant calcium increase (17-fold), fibrosis (2-fold), and LV hypertrophy. End-systolic elastance dropped from 0.66 +/- 0.31 mmHg/microl (CTRL) to 0.34 +/- 0.11 mmHg/microl (MI) (P < 0.05). Normalized elastance was significantly reduced in the MI group during the preejection, ejection, and diastolic periods (P < 0.05). The slope of E(n)(t(n)) during the alpha(PEP) and beta were significantly altered after MI (P < 0.05). Furthermore, tau and end-diastolic E(min)(n) were both significantly augmented in the MI group. We conclude that the E(n)(t(n)) differs quantitatively in all phases of the heart cycle, between normal and hearts post-MI. This should be considered when utilizing the single-beat concept.