95 resultados para electroosmotic mobility
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.
Resumo:
Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.
Resumo:
Mobility of naturally occurring U-238 and U-234 radionuclides was studied in a low permeability, reducing claystone formation (Opalinus Clay) near its contact with an overlying oxidising aquifer (Dogger Limestones) at Mont Terri, Switzerland. Our data point to a limited redistribution of U in some of the studied samples. Observed centimetre-scale U mobility is explained by slow diffusive transport of U-234 in the pore waters of the Opalinus Clay driven by spatially variable in situ supply (by alpha-recoil) of U-234 from the rock matrix. Metre-scale mobility is interpreted as a result of infiltration of meteoric water into the overlying aquifer which developed gradients of U concentration across the two rock formations. This triggered a slow in-diffusion of U with (U-234/U-238) > 1 into the Opalinus Clay as attested by a clear-cut pattern of decreasing bulk rock (U-234/U-238) inwards the Opalinus Clay, away from the Dogger Limestones.
Resumo:
The progress of wet age-related macular degeneration can now be controlled by intravitreal drug injection. This approach requires repeated injections, which could be avoided by delivering the drug to the retina. Intraocular implants are a promising solution for drug delivery near the retina. Currently, their accurate placement is challenging, and they can only be removed after a vitrectomy. In this paper, we introduce an approach for minimally invasive retinal drug delivery using magnetic intraocular inserts. We briefly discuss the electromagnetic-control system for magnetic implants and then focus on evaluating their ability to move in the vitreous humor. The mobility of magnetic intraocular implants is estimated in vitro with synthesized vitreous humors, and ex vivo with experiments on cadaver porcine eyes. Preliminary results show that with such magnetic implants a vitrectomy can be avoided.