11 resultados para electromagnetic wave emission
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO3 waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.
Resumo:
We calculate the set of O(\alpha_s) corrections to the double differential decay width d\Gamma_{77}/(ds_1 \, ds_2) for the process \bar{B} \to X_s \gamma \gamma originating from diagrams involving the electromagnetic dipole operator O_7. The kinematical variables s_1 and s_2 are defined as s_i=(p_b - q_i)^2/m_b^2, where p_b, q_1, q_2 are the momenta of b-quark and two photons. While the (renormalized) virtual corrections are worked out exactly for a certain range of s_1 and s_2, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the (normalized) hadronic mass s_3=(p_b-q_1-q_2)^2/m_b^2 in the underlying triple differential decay width d\Gamma_{77}/(ds_1 ds_2 ds_3). The double differential decay width, based on this approximation, is free of infrared- and collinear singularities when combining virtual- and bremsstrahlung corrections. The corresponding results are obtained analytically. When retaining all powers in s_3, the sum of virtual- and bremstrahlung corrections contains uncanceled 1/\epsilon singularities (which are due to collinear photon emission from the s-quark) and other concepts, which go beyond perturbation theory, like parton fragmentation functions of a quark or a gluon into a photon, are needed which is beyond the scope of our paper.
Resumo:
This paper describes the results of a unique "natural experiment" of the operation and cessation of a broadcast transmitter with its short-wave electromagnetic fields (6-22 MHz) on sleep quality and melatonin cycle in a general human population sample. In 1998, 54 volunteers (21 men, 33 women) were followed for 1 week each before and after shut-down of the short-wave radio transmitter at Schwarzenburg (Switzerland). Salivary melatonin was sampled five times a day and total daily excretion and acrophase were estimated using complex cosinor analysis. Sleep quality was recorded daily using a visual analogue scale. Before shut down, self-rated sleep quality was reduced by 3.9 units (95% CI: 1.7-6.0) per mA/m increase in magnetic field exposure. The corresponding decrease in melatonin excretion was 10% (95% CI: -32 to 20%). After shutdown, sleep quality improved by 1.7 units (95% CI: 0.1-3.4) per mA/m decrease in magnetic field exposure. Melatonin excretion increased by 15% (95% CI: -3 to 36%) compared to baseline values suggesting a rebound effect. Stratified analyses showed an exposure effect on melatonin excretion in poor sleepers (26% increase; 95% CI: 8-47%) but not in good sleepers. Change in sleep quality and melatonin excretion was related to the extent of magnetic field reduction after the transmitter's shut down in poor but not good sleepers. However, blinding of exposure was not possible in this observational study and this may have affected the outcome measurements in a direct or indirect (psychological) way.
Resumo:
The generation of collimated electron beams from metal double-gate nanotip arrays excited by near infrared laser pulses is studied. Using electromagnetic and particle tracking simulations, we showed that electron pulses with small rms transverse velocities are efficiently produced from nanotip arrays by laser-induced field emission with the laser wavelength tuned to surface plasmon polariton resonance of the stacked double-gate structure. The result indicates the possibility of realizing a metal nanotip array cathode that outperforms state-of-the-art photocathodes.
Resumo:
We calculate the O(αs) corrections to the double differential decay width dΓ77/(ds1ds2) for the process B¯→Xsγγ, originating from diagrams involving the electromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as si=(pb−qi)2/m2b, where pb, q1, q2 are the momenta of the b quark and two photons. We introduce a nonzero mass ms for the strange quark to regulate configurations where the gluon or one of the photons become collinear with the strange quark and retain terms which are logarithmic in ms, while discarding terms which go to zero in the limit ms→0. When combining virtual and bremsstrahlung corrections, the infrared and collinear singularities induced by soft and/or collinear gluons drop out. By our cuts the photons do not become soft, but one of them can become collinear with the strange quark. This implies that in the final result a single logarithm of ms survives. In principle, the configurations with collinear photon emission could be treated using fragmentation functions. In a related work we find that similar results can be obtained when simply interpreting ms appearing in the final result as a constituent mass. We do so in the present paper and vary ms between 400 and 600 MeV in the numerics. This work extends a previous paper by us, where only the leading power terms with respect to the (normalized) hadronic mass s3=(pb−q1−q2)2/m2b were taken into account in the underlying triple differential decay width dΓ77/(ds1ds2ds3).
Resumo:
Vibrations, electromagnetic oscillations, and temperature drifts are among the main reasons for dephasing in matter-wave interferometry. Sophisticated interferometry experiments, e.g., with ions or heavy molecules, often require integration times of several minutes due to the low source intensity or the high velocity selection. Here we present a scheme to suppress the influence of such dephasing mechanisms—especially in the low-frequency regime—by analyzing temporal and spatial particle correlations available in modern detectors. Such correlations can reveal interference properties that would otherwise be washed out due to dephasing by external oscillating signals. The method is shown experimentally in a biprism electron interferometer where a perturbing oscillation is artificially introduced by a periodically varying magnetic field. We provide a full theoretical description of the particle correlations where the perturbing frequency and amplitude can be revealed from the disturbed interferogram. The original spatial fringe pattern without the perturbation can thereby be restored. The technique can be applied to lower the general noise requirements in matter-wave interferometers. It allows for the optimization of electromagnetic shielding and decreases the efforts for vibrational or temperature stabilization.
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.