35 resultados para electrolytes fractional excretion
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo. However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome.
Resumo:
To evaluate tenofovir-related nephropathy, we quantified calculated glomerular filtration rates (GFR) and renal tubular function in 46 tenofovir-treated patients and 25 without tenofovir. We also analysed patients who stopped tenofovir for drug-related nephrotoxicity at our clinic. Tenofovir use combined with non-nucleoside reverse transcriptase inhibitors, but not with protease inhibitors, resulted in a significant increase in calculated GFR. Tenofovir use was associated with significantly lower phosphatemia and a marginally increased fractional excretion of uric acid, but no other signs of tubulopathy.
Resumo:
BACKGROUND Acute kidney injury (AKI) is common in dogs. Few studies have assessed sequential changes in indices of kidney function in dogs with naturally occurring AKI. OBJECTIVE To document sequential changes of conventional indices of renal function, to better define the course of AKI, and to identify a candidate marker for recovery. ANIMALS Ten dogs with AKI. METHODS Dogs were prospectively enrolled and divided into surviving and nonsurviving dogs. Urine production was measured with a closed system for 7 days. One and 24-hour urinary clearances were performed daily to estimate solute excretion and glomerular filtration rate (GFR). Solute excretion was calculated as an excretion ratio (ER) and fractional clearance (FC) based on both the 1- and 24-hour urine collections. RESULTS Four dogs survived and 6 died. At presentation, GFR was not significantly different between the outcome groups, but significantly (P = .03) increased over time in the surviving, but not in the nonsurviving dogs. Fractional clearance of Na decreased significantly over time (20.2-9.4%, P < .0001) in the surviving, but not in the nonsurviving dogs. The ER and FC of solutes were highly correlated (r, 0.70-0.95). CONCLUSION AND CLINICAL IMPACT Excretion ratio might be used in the clinical setting as a surrogate marker to follow trends in solute excretion. Increased GFR, urine production, and decreased FC of Na were markers of renal recovery. The FC of Na is a simple, noninvasive, and cost-effective method that can be used to evaluate recovery of renal function.
Resumo:
In autologous cell therapy, e.g. in melanocyte transplantation for vitiligo, a minimally invasive mode of transepidermal delivery of the isolated cells is of crucial importance to reduce potential side effects such as infections and scarring as well as to minimize the duration of sick leave.
Resumo:
Thyroid hormone is a central regulator of body functions. Disorders of thyroid function are considered to be a cause of electrolyte disorders. Only few data on the association between thyroid function and electrolyte disorders exists.
Resumo:
The preferred initial treatment for patients with stable coronary artery disease is the best available medical therapy. We hypothesized that in patients with functionally significant stenoses, as determined by measurement of fractional flow reserve (FFR), percutaneous coronary intervention (PCI) plus the best available medical therapy would be superior to the best available medical therapy alone.
Resumo:
OBJECTIVE: While systemic glucocorticoids compromise bone metabolism, altered intracellular cortisol availability may also contribute to the pathogenesis of primary male osteoporosis (MO). The objective of this study was to assess whether intracellular cortisol availability is increased in MO due to a distorted local cortisol metabolism. METHODS: Forty-one patients with MO were compared with age- and BMI-matched non-osteoporotic subjects after excluding overt systemic hypercortisolism (N = 41). Cortisol, cortisone and the respective tetrahydro-, 5α-tetrahydro- and total cortisol metabolites were analysed by GC-MS in 24 h urine. Apparent 11β-hydroxysteroid dehydrogenase (11β-HSD) enzyme activities, excretion of cortisol metabolites and calcium, and fractional urinary calcium excretion were assessed and related to BMD. RESULTS: Fractional and total urinary calcium excretion negatively correlated with BMD at all (P < 0.05) and at three of five (P < 0.05) measurement sites, respectively. While systemic cortisol was unchanged, apparent 11β-HSD enzyme activity in MO patients (P < 0.01) suggested increased intracellular cortisol availability. Total and fractional urinary calcium excretion was higher, with apparent 11β-HSD enzyme activities consistent with an enhanced intracellular cortisol availability (P < 0.05). CONCLUSION: Apparent 11β-HSD enzyme activities consistent with increased intracellular cortisol availability correlated with urinary calcium loss and reduced bone mineral density in MO. The changes in 11β-HSD activity were associated with both the fractional calcium excretion, suggesting altered renal calcium handling, and the absolute urinary calcium excretion. Both mechanisms could result in a marked bone calcium deficiency if insufficiently compensated for by intestinal calcium uptake.
Resumo:
Whether and to what extent activation of peripheral presynaptic dopamine2-receptors may modulate the release of norepinephrine (NE) and so affect blood pressure (BP) in normal or hypertensive man is not clear. The hydrogenated ergotoxine derivative, co-dergocrine, given in effective antihypertensive rather than excessive experimental doses, has recently been shown to act predominantly as a peripheral dopamine2-receptor agonist in several species. Accordingly, BP regulation assessed has been in 8 normal men on placebo and after 3 weeks on codergocrine 4 mg/day. Co-dergocrine significantly reduced urinary NE excretion from 43 to 33 micrograms/24 h, supine and upright plasma NE 21 to 16 and 49 to 36 ng/dl, respectively, heart rate (-8 and -5%, respectively) and upright systolic BP, 115 to 102 mm Hg; upright diastolic BP also tended to be lower. A standard pressor dose of infused NE was lowered from 131 to 102 ng/kg/min, and the relationship between NE-induced changes in BP and concomitant NE infusion rate or plasma NE concentration was displaced to the left. Exchangeable sodium and plasma volume tended to be slightly decreased. Plasma and urinary electrolytes and epinephrine, plasma renin activity and aldosterone levels, pressor responsiveness to angiotensin II, the chronotropic responses to isoproterenol, and the NE-induced rise in BP, plasma clearance of NE, glomerular filtration rate and effective renal plasma flow were not consistently modified. The findings are consistent with effective peripheral dopamine2-receptor agonism by co-dergocrine in humans. Peripheral presynaptic dopaminergic activation may modulate sympathetic activity and BP in normal man.
Resumo:
The value of measurements of eicosanoids in exhaled breath condensate (EBC) for the evaluation of childhood asthma is still inconclusive most likely because of the limited value of the methods used. In this case-control study in 48 asthmatic and 20 healthy children, we aimed to characterize the baseline profile of the inflammatory mediators cysteinyl leukotrienes (cysLTs), 9(alpha)11(beta)PGF(2), PGE(2), PGF(2alpha), 8-isoprostane (8-iso-PGF(2alpha)) within EBC in asthmatic compared with healthy children using new methods. In addition, we investigated their relation to other inflammatory markers. The assessment included collection of EBC, measurement of fractional exhaled nitric oxide (FE(NO)) and evaluation of urinary excretion of leukotriene E(4.) cysLTs were measured directly in EBC by radioimmunoassay and prostanoids were measured using gas chromatography negative-ion chemical ionization mass spectrometry. Only cysLT levels were significantly higher in asthmatic compared with healthy children (p = 0.002). No significant differences in cysLTs were found between steroid naïve and patients receiving inhaled corticosteroids. In contrast, FE(NO) was significantly higher in steroid naïve compared with steroid-treated asthmatic and healthy children (p = 0.04 and 0.024, respectively). The diagnostic accuracy of cysLTs in EBC for asthma was 73.6% for the whole group and 78.2% for steroid-naïve asthmatic children. The accuracy to classify asthmatic for FE(NO) was poor (62.9%) for the whole group, but improved to 79.9% when only steroid-naïve asthmatic children were taken into consideration. cysLTs in EBC is an inflammatory marker which distinguishes asthmatics, as a whole group, from healthy children.
Resumo:
Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal gamma-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2'-deoxyuridine, 2'-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2'-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8-12 h but returning to baseline by 36 h after exposure. It is proposed that 2'-deoxyuridine and 2'-deoxyxanthosine arise as a result of gamma irradiation by nitrosative deamination of 2'-deoxycytidine and 2'-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.