7 resultados para egg size
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mothers should adjust the size of propagules to the selective forces to which these offspring will be exposed. Usually, a larger propagule size is favored when young are exposed to high mortality risk or conspecific competition. Here we test 2 predictions on how egg size should vary with these selective agents. When offspring are cared for by parents and/or alloparents, protection may reduce the predation risk to young, which may allow mothers to invest less per single offspring. In the cooperatively breeding cichlid Neolamprologus pulcher, brood care helpers protect group offspring and reduce the latters' mortality rate. Therefore, females are expected to reduce their investment per egg when more helpers are present. In a first experiment, we tested this prediction by manipulating the helper number. In N. pulcher, helpers compete for dispersal opportunities with similar-sized individuals of neighboring groups. If the expected future competition pressure on young is high, females should increase their investment per offspring to give them a head start. In a second experiment, we tested whether females produce larger eggs when perceived neighbor density is high. Females indeed reduced egg size with increasing helper number. However, we did not detect an effect of local density on egg size, although females took longer to produce the next clutch when local density was high. We argue that females can use the energy saved by adjusting egg size to reduced predation risk to enhance future reproductive output. Adaptive adjustment of offspring size to helper number may be an important, as yet unrecognized, strategy of cooperative breeders.
Resumo:
Support for the theory of ecological speciation requires evidence for ecological divergence between species which directly or indirectly causes reproductive isolation. This study investigates effects of ecological vs. genetic disparity of parental species on the presence of endogenous selection (deformation and mortality rates) and potential sources of exogenous selection (growth rates and hatch timing) on hybrids. Hybrid embryonic development is analysed in a common-garden full-sib cross of three species belonging to two different ecotypes within the Coregonus lavaretus species flock in the central Alpine region of Europe. Although hatch timing was similar across the three species, embryonic growth rates and egg sizes differed between ecotypes. This led to a mismatch between embryonic growth rate and egg size in hybrid crosses that reveals epistasis between the maternal and embryonic genomes and transgressive hatch times that were asynchronous with control crosses. A strong constraint of egg size to embryo size at late development was also evident. We argue that this demonstrates potential for coadaptation of a maternal trait (egg size) with offspring growth rate to be an important source of selection against hybridization between ecotypes with different egg sizes. Implications for the measurement and quantification of early life-history traits affected by this additive relationship, such as hatch day and larval size, are also discussed.
Resumo:
Environmental factors can determine which group size will maximize the fitness of group members. This is particularly important in cooperative breeders, where group members often serve different purposes. Experimental studies are yet lacking to check whether ecologically mediated need for help will change the propensity of dominant group members to accept immigrants. Here, we manipulated the perceived risk of predation for dominant breeders of the cooperatively breeding cichlid fish Neolamprologus pulcher to test their response to unrelated and previously unknown immigrants. Potential immigrants were more readily accepted if groups were exposed to fish predators or egg predators than to herbivorous fish or control situations lacking predation risk. Our data are consistent with both risk dilution and helping effects. Egg predators were presented before spawning, which might suggest that the fish adjust acceptance rates also to a potential future threat. Dominant group members of N. pulcher apparently consider both present and future need of help based on ecological demand. This suggests that acceptance of immigrants and, more generally, tolerance of group members on demand could be a widespread response to ecological conditions in cooperatively breeding animals.
Resumo:
Laying hens in loose housing systems have access to group-nests which provide space for several hens at a time to lay their eggs. They are thus rather large and the trend in the industry is to further increase the size of these nests. Though practicality is important for the producer, group-nests should also cater to the egg-laying behaviour of hens to promote good welfare. One of the factors playing a role in the attractiveness of a nest is the amount of enclosure: hens prefer more enclosure when having a choice between different nest types. The aim of this study was to investigate if hens prefer smaller group-nests to lay their eggs given that they may seem more enclosed than larger nests. The relative preference of groups of laying hens for two nest sizes – 0.43m2 vs. 0.86m2 – was tested in a free-access choice test. The experiment was conducted in two consecutive trials with 100 hens each. They were housed from 18 to 36 weeks of age in five groups of 20 animals and had access to two commercial group-nests differing in internal size only. We counted eggs daily as a measure of nest preference. At 28 and 36 weeks of age, videos were taken of the pens and inside the nests on one day during the first 5h of lights-on. The nest videos were used to record the number of hens per nest and their behaviour with a 10min scan sampling interval. The pen videos were observed continuously to count the total number of nest visits per nest and to calculate the duration of nest visits of five focal hens per pen. We found a relative preference for the small nest as more eggs, fewer nest visits per egg and longer nest visit durations were recorded for that nest. In addition, more hens – including more sitting hens – were in the small nests during the main egg-laying period, while the number of standing hens did not differ. These observations indicate that even though both nests may have been explored to a similar extent, the hens preferred the small nest for egg-laying.