6 resultados para effective mass
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation—a priori, one of the more immediate corollaries of detecting primordial tensor modes—one necessarily makes reference to a particular choice of units, the natural choice for which is Planck units. In this note, we discuss various aspects of how inferring the energy scale of inflation is complicated by the fact that the effective strength of gravity as seen by inflationary quanta necessarily differs from that seen by gravitational experiments at presently accessible scales. The uncertainty in the former relative to the latter has to do with the unknown spectrum of universally coupled particles between laboratory scales and the putative scale of inflation. These intermediate particles could be in hidden as well as visible sectors or could also be associated with Kaluza–Klein resonances associated with a compactification scale below the scale of inflation. We discuss various implications for cosmological observables.
Resumo:
BACKGROUND: Estimation of respiratory deadspace is often based on the CO2 expirogram, however presence of the CO2 sensor increases equipment deadspace, which in turn influences breathing pattern and calculation of lung volume. In addition, it is necessary to correct for the delay between the sensor and flow signals. We propose a new method for estimation of effective deadspace using the molar mass (MM) signal from an ultrasonic flowmeter device, which does not require delay correction. We hypothesize that this estimation is correlated with that calculated from the CO2 signal using the Fowler method. METHODS: Breath-by-breath CO2, MM and flow measurements were made in a group of 77 term-born healthy infants. Fowler deadspace (Vd,Fowler) was calculated after correcting for the flow-dependent delay in the CO2 signal. Deadspace estimated from the MM signal (Vd,MM) was defined as the volume passing through the flowhead between start of expiration and the 10% rise point in MM. RESULTS: Correlation (r = 0.456, P < 0.0001) was found between Vd,MM and Vd,Fowler averaged over all measurements, with a mean difference of -1.4% (95% CI -4.1 to 1.3%). Vd,MM ranged from 6.6 to 11.4 ml between subjects, while Vd,Fowler ranged from 5.9 to 12.0 ml. Mean intra-measurement CV over 5-10 breaths was 7.8 +/- 5.6% for Vd,MM and 7.8 +/- 3.7% for Vd,Fowler. Mean intra-subject CV was 6.0 +/- 4.5% for Vd,MM and 8.3 +/- 5.9% for Vd,Fowler. Correcting for the CO2 signal delay resulted in a 12% difference (P = 0.022) in Vd,Fowler. Vd,MM could be obtained more frequently than Vd,Fowler in infants with CLD, with a high variability. CONCLUSIONS: Use of the MM signal provides a feasible estimate of Fowler deadspace without introducing additional equipment deadspace. The simple calculation without need for delay correction makes individual adjustment for deadspace in FRC measurements possible. This is especially important given the relative large range of deadspace seen in this homogeneous group of infants.
Resumo:
Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (< 1 GW/cm2) is used to achieve stable ion formation and low sample consumption. In comparison to our previous laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
We study the strength of the electroweak phase transition in models with two light Higgs doublets and a light SU(3)c triplet by means of lattice simulations in a dimensionally reduced effective theory. In the parameter region considered the transition on the lattice is significantly stronger than indicated by a 2-loop perturbative analysis. Within some ultraviolet uncertainties, the finding applies to MSSM with a Higgs mass mh ≈ 126 GeV and shows that the parameter region useful for electroweak baryogenesis is enlarged. In particular (even though only dedicated analyses can quantify the issue), the tension between LHC constraints after the 7 TeV and 8 TeV runs and frameworks where the electroweak phase transition is driven by light stops, seems to be relaxed.
Resumo:
Metallocene dichlorides constitute a remarkable class of antineoplastic agents that are highly effective against several cancer cell lines. They were shown to accumulate in the DNA-rich region, which suggests DNA as the primary target. These compounds exhibit two cyclopentadienyl ligands and two labile halide ligands, resulting in a bent sandwich structure. The cis-dihalide motif is structurally related to the cis-chloro configuration of cisplatin and similar modes of action can thus be assumed. Cisplatin binds to two neighboring guanine nucleobases in DNA and consequently, distorts the double-helix, thereby inhibiting DNA replication and transcription. Platinum is classified as a soft Lewis acid and binds preferentially to the nitrogen atoms within the nucleobases. The metallocene dichlorides investigated in this study comprise the metal centers Ti, V, Nb, Mo, Hf, and W, which are classified as hard or intermediate Lewis acids, and thus, favor binding to the phosphate oxygen. Although several studies reported adduct formation of metallocene dichlorides with nucleic acids, substantial information about the adduct composition, the binding pattern, and the nucleobase selectivity has not been provided yet. ESI-MS analyses gave evidence for the formation of metallocene adducts (M = Ti, V, Mo, and W) with single-stranded DNA homologues at pH 7. No adducts were formed with Nb and Hf at neutral pH, albeit adducts with Nb were observed at a low pH. MS2 data revealed considerable differences of the adduct compositions. The product ion spectra of DNA adducts with hard Lewis acids (Ti, V) gave evidence for the loss of metallocene ligands and only moderate backbone fragmentation was observed. By contrast, adducts with intermediate Lewis acids (Mo, W) retained the hydroxy ligands. Preliminary results are in good agreement with the Pearson concept and DFT calculations. Since the metallodrugs were not lost upon CID, the nucleobase selectivity, stoichiometry, and binding patterns can be elucidated by means of tandem mass spectrometry.
Resumo:
Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed.