3 resultados para ecological restoration

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil indicators may be used for assessing both land suitability for restoration and the effectiveness of restoration strategies in restoring ecosystem functioning and services. In this review paper, several soil indicators, which can be used to assess the effectiveness of ecological restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed. The selected indicators represent the different viewpoints of pedology, ecology, hydrology, and land management. Two overall outcomes stem from the review. (i) The success of restoration projects relies on a proper understanding of their ecology, namely the relationships between soil, plants, hydrology, climate, and land management at different scales, which are particularly complex due to the heterogeneous pattern of ecosystems functioning in drylands. (ii) The selection of the most suitable soil indicators follows a clear identification of the different and sometimes competing ecosystem services that the project is aimed at restoring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The giant tortoises of the Galapagos have become greatly depleted since European discovery of the islands in the 16th Century, with populations declining from an estimated 250000 to between 8000 and 14000 in the 1970s. Successful tortoise conservation efforts have focused on species recovery, but ecosystem conservation and restoration requires a better understanding of the wider ecological consequences of this drastic reduction in the archipelago's only large native herbivore. We report the first evidence from palaeoecological records of coprophilous fungal spores of the formerly more extensive geographical range of giant tortoises in the highlands of Santa Cruz Island. Upland tortoise populations on Santa Cruz declined 500-700years ago, likely the result of human impact or possible climatic change. Former freshwater wetlands, a now limited habitat-type, were found to have converted to Sphagnum bogs concomitant with tortoise loss, subsequently leading to the decline of several now-rare or extinct plant species.