127 resultados para echo boomers
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To assess the feasibility and accuracy of a synthetic-echo time (TE) magnetic resonance (MR) postprocessing technique for the diagnostic evaluation of abnormalities of menisci and articular cartilage in the knee.
Resumo:
To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.
Resumo:
To use a new approach which provides, based on the widely used three-dimensional double-echo steady-state (DESS) sequence, in addition to the morphological information, the generation of biochemical T2 maps in one hybrid sequence.
Resumo:
To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score.
Resumo:
The aim of this study was to evaluate the accuracy of dual-echo (DE) magnetic resonance imaging (MRI) with and without fat and water separation for the quantification of liver fat content (LFC) in vitro and in patients undergoing liver surgery, with comparison to histopathologic analysis.
Resumo:
The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.
Resumo:
PURPOSE: To determine the effect of two pairs of echo times (TEs) for in-phase (IP) and opposed-phase (OP) 3.0-T magnetic resonance (MR) imaging on (a) quantitative analysis prospectively in a phantom study and (b) diagnostic accuracy retrospectively in a clinical study of adrenal tumors, with use of various reference standards in the clinical study. MATERIALS AND METHODS: A fat-saline phantom was used to perform IP and OP 3.0-T MR imaging for various fat fractions. The institutional review board approved this HIPAA-compliant study, with waiver of informed consent. Single-breath-hold IP and OP 3.0-T MR images in 21 patients (14 women, seven men; mean age, 63 years) with 23 adrenal tumors (16 adenomas, six metastases, one adrenocortical carcinoma) were reviewed. The MR protocol involved two acquisition schemes: In scheme A, the first OP echo (approximately 1.5-msec TE) and the second IP echo (approximately 4.9-msec TE) were acquired. In scheme B, the first IP echo (approximately 2.4-msec TE) and the third OP echo (approximately 5.8-msec TE) were acquired. Quantitative analysis was performed, and analysis of variance was used to test for differences between adenomas and nonadenomas. RESULTS: In the phantom study, scheme B did not enable discrimination among voxels that had small amounts of fat. In the clinical study, no overlap in signal intensity (SI) index values between adenomas and nonadenomas was seen (P < .05) with scheme A. However, with scheme B, no overlap in the adrenal gland SI-to-liver SI ratio between adenomas and nonadenomas was seen (P < .05). With scheme B, no overlap in adrenal gland SI index-to-liver SI index ratio between adenomas and nonadenomas was seen (P < .05). CONCLUSION: This initial experience indicates SI index is the most reliable parameter for characterization of adrenal tumors with 3.0-T MR imaging when obtaining OP echo before IP echo. When acquiring IP echo before OP echo, however, nonadenomas can be mistaken as adenomas with use of the SI index value.
Resumo:
The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 +/- 16.3 years; MACT: 37.4 +/- 8.2 years) and postoperative interval (MFX: 33.0 +/- 17.3 months; MACT: 32.0 +/- 17.2 months). The Delta relaxation rate (DeltaR1) for repair tissue and normal hyaline cartilage and the relative DeltaR1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean DeltaR1 for MFX was 1.07 +/- 0.34 versus 0.32 +/- 0.20 at the intact control site, and for MACT, 1.90 +/- 0.49 compared to 0.87 +/- 0.44, which resulted in a relative DeltaR1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min.
Resumo:
This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.
Resumo:
The double-echo-steady-state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip-angle of 90 degrees , the calculated T2 becomes independent of T1, but with very low signal-to-noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip-angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip-angles were compared with standard multiecho, spin-echo T2. Furthermore, DESS-T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip-angle of 33 degrees was the best compromise for the combination of DESS-T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (approximately 20% relative difference between SE-T2 and DESS-T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS-T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one-step examination.
Resumo:
OBJECTIVE The aim of this work is to investigate and compare cardiac proton density (PD) weighted fast field echo (FFE) post-mortem magnetic resonance (PMMR) imaging with standard cardiac PMMR imaging (T1-weighted and T2-weighted turbo spin-echo (TSE)), postmortem CT (PMCT) as well as autopsy. MATERIALS AND METHODS Two human cadavers sequentially underwent cardiac PMCT and PMMR imaging (PD-weighted FFE, T1-weighted and T2-weighted TSE) and autopsy. The cardiac PMMR images were compared to each other as well as to PMCT and autopsy findings. RESULTS For the first case, cardiac PMMR exhibited a focal region of low signal in PD-weighted FFE and T2-weighted TSE images, surrounded by a signal intense rim in the T2-weighted images. T1-weighted TSE and PMCT did not appear to identify any focal abnormality. Macroscopic inspection identified a blood clot; histology confirmed this to be a thrombus with an adhering myocardial infarction. In the second case, a myocardial rupture with heart tamponade was identified in all PMMR images, located at the anterior wall of the left ventricle; PMCT excluded additional ruptures. In PD-weighted FFE and T2-weighted TSE images, it occurred hypo-intense, while resulting in small clustered hyper-intense spots in T1-weighted TSE. Autopsy confirmed the PMMR and PMCT findings. CONCLUSIONS Presented initial results have shown PD-weighted FFE to be a valuable imaging sequence in addition to traditional T2-weighted TSE imaging for blood clots and myocardial haemorrhage with clearer contrast between affected and healthy myocardium.