7 resultados para eastern Romanche Fracture Zone
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The convergence between the Eurasian and Arabian plates has created a complicated structural setting in the Eastern Turkish high plateau (ETHP), particularly around the Karlıova Triple Junction (KTJ) where the Eurasian, Arabian, and Anatolian plates intersect. This region of interest includes the junction of the North Anatolian Shear Zone (NASZ) and the East Anatolian Shear Zone (EASZ), which forms the northern border of the westwardly extruding Anatolian Scholle and the western boundary of the ETHP, respectively. In this study, we focused on a poorly studied component of the KTJ, the Varto Fault Zone (VFZ), and the adjacent secondary structures, which have complex structural settings. Through integrated analyses of remote sensing and field observations, we identified a widely distributed transpressional zone where the Varto segment of the VFZ forms the most northern boundary. The other segments, namely, the Leylekdağ and Çayçatı segments, are oblique-reverse faults that are significantly defined by uplifted topography along their strikes. The measured 515 and 265 m of cumulative uplifts for Mt. Leylek and Mt. Dodan, respectively, yield a minimum uplift rate of 0.35 mm/a for the last 2.2 Ma. The multi-oriented secondary structures were mostly correlated with “the distributed strike-slip” and “the distributed transpressional” in analogue experiments. The misfits in strike of some of secondary faults between our observations and the experimental results were justified by about 20° to 25° clockwise restoration of all relevant structures that were palaeomagnetically measured to have happened since ~ 2.8 Ma ago. Our detected fault patterns and their true nature are well aligned as being part of a transpressional tectonic setting that supports previously suggested stationary triple junction models.
Resumo:
This ex vivo pilot study tested the influence of defect extension and quartz-fiber post placement (QFP) on the ex vivo survival rate and fracture resistance of root-treated upper central incisors served as abutments for zirconia 2-unit cantilever fixed partial dentures (2U-FPDs) exposed to 10 years of simulated clinical function.
Resumo:
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
Neolithic and Bronze Age wetland sites around the Alps (so called pile-dwellings, Pfahlbauten or palafittes in German/French) are of outstanding universal value (UNESCO-world heritage since 2011). Typical sites are in lakes, rivers and bogs, dating between 5300 and 800 BC. Of common character is the perfect conservation of wood, textiles from plant fabrics and many other organic materials. Larger quantities of sub-fossilized wood, as in the peri-alpine sites, offer the possibility of high-precision dating by dendrochronology. Research in these wetland sites started in the mid-19th century. Through large scale rescue excavations since the 1970s and the evolution of underwater archaeology in the same period the Swiss accumulated a thorough experience with these specific sites. Research in wetland sites is shared between cantonal institutions and universities and led to a worldwide unique accumulation of knowledge. Comparable sites exist outside of the Alpine area, but in much smaller quantities. Regions like Russia (small lakes in NW-Russia) and Macedonia (medium size lakes in the border zone of Macedonia, Albania and Greece) have a high scientific potential; rivers in Ukraine are supposed to have the same type of sites.
Resumo:
Technical complications in implant prosthetic cases represent a major challenge in dentistry. This case report describes minimally invasive management to recover an implant with a fractured remnant of a zirconia abutment, including provisional rehabilitation during a sequential treatment protocol in the esthetic zone. A patient was treated with a screw-retained one-piece implant-supported reconstruction made of a customized zirconia abutment with direct ceramic veneering in the maxillary right central incisor position. During the prosthetic try-in, a fracture in the apical portion of the abutment was evident. The first rescue attempt led to fracture of the retrieval instrument. Immediately, an individualized wired construction was applied to bond the existing fractured reconstruction to the neighboring teeth to maintain the peri-implant mucosal architecture. Because the implant screw canal was blocked, a customized round bur had to be manufactured and was placed in the implant axis with a specific bracket tool from the service set to protect the interior implant threads. Then, the drills of the service set were guided by the newly created access to remove the fractured remnants. The implant screw was retapped and the area rinsed with chlorhexidine solution. All remnants were removed without the need for surgical intervention. Neither the implant connection nor the bone-to-implant interface was damaged. The stepwise treatment approach with the customized round bur combined with the system-specific drills of the service set saved the blocked implant so that the patient could be successfully rehabilitated with a new implant reconstruction.