64 resultados para duchenne muscular dystrophy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the dystrophin gene have long been recognised as a cause of mental retardation. However, for reasons that are unclear, some boys with dystrophin mutations do not show general cognitive deficits. To investigate the relationship between dystrophin mutations and cognition, the general intellectual abilities of a group of 25 boys with genetically confirmed Duchenne muscular dystrophy were evaluated. Furthermore, a subgroup underwent additional detailed neuropsychological assessment. The results showed a mean full scale intelligence quotient (IQ) of 88 (standard deviation 24). Patients performed very poorly on various neuropsychological tests, including arithmetics, digit span tests and verbal fluency. No simple relationship between dystrophin mutations and cognitive functioning could be detected. However, our analysis revealed that patients who lack the dystrophin isoform Dp140 have significantly greater cognitive problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dilated cardiomyopathy is a serious and almost inevitable complication of Duchenne Muscular Dystrophy, a devastating and fatal disease of skeletal muscle resulting from the lack of functional dystrophin, a protein linking the cytoskeleton to the extracellular matrix. Ultimately, it leads to congestive heart failure and arrhythmias resulting from both cardiac muscle fibrosis and impaired function of the remaining cardiomyocytes. Here we summarize findings obtained in several laboratories, focusing on cellular mechanisms that result in degradation of cardiac functions in dystrophy. This article is part of a Special Issue entitled "Calcium Signaling in Heart".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations of the X-linked dystrophin gene. BMD patients are less affected clinically than DMD patients. We present five patients with a diagnosis of BMD. First, two identical twins, with a deletion of exon 48 of the dystrophin gene, who experienced prominent muscle cramps from the age of three. The histopathological examination of muscle biopsies of these two twins revealed only very slight muscle fiber alterations. Second, two brothers who displayed marked, unusual intrafamilial variability of the clinical picture as well as showing a new point mutation in the dystrophin gene. And finally, a fifth boy who displayed a new point mutation in the dystrophin gene. Although he was clinically asymptomatic at the age of 15 and muscle biopsy only showed very minor myopathic signs, serum Creatine Kinase (CK) levels had been considerably elevated for years. Taken together, these cases add to the spectrum of marked discrepancies in clinical, histopathological and molecular genetic findings in BMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders1, 2. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin3, 4 and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure5 and neurocognitive impairment6. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant muscle disorder, usually of late onset. OPMD is among the few triplet repeat diseases/ polyalanine (poly(A)) expansion diseases for which the function of the mutated gene is quite well established. The disease is characterised by slowly progressive bilateral ptosis, dysphagia and proximal limb weakness, appearing after the age of 40 years. Prevalence and incidence of OPMD are low, but the disease occurs all over the world. The pedigrees of two Swiss kindred have been previously reported in Switzerland. In the last 2 years, accumulation of newly diagnosed cases in North-West Switzerland have been observed, which suggests that OPMD may be more prevalent than previously thought. Primary care providers, opthalmologists and neurologists that are alert for the almost specific combination of clinical signs, together with the availability of reliable genetic testing may help to recognise currently undiagnosed patients. They can advance knowledge and the characterisation of the OPMD population in Switzerland. Since the number of disorders linked to poly(A) expansions is growing rapidly, the study of OPMD may contribute to the understanding of a large group of other developmental and degenerative diseases. On the basis of a patient with "classical" OPMD, this review summarises the clinical, therapeutic, epidemiological, pathomechanistic and genetic aspects of OPMD, provides practical information about the differential diagnosis of OPMD, and presents a survey of different investigational methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard needle electromyography (EMG) of 56 muscles and nerve conduction velocities (NCV) of the ulnar and common peroneal nerves were investigated in each of six cats affected with hypertrophic feline muscular dystrophy, 10 related heterozygote carriers and 10 normal cats. The EMG findings were considered normal in carrier and control cats, and consisted of 33% normal readings, 22% myotonic discharges, 18% fibrillation potentials, 11% prolonged insertional potentials, 10% complex repetitive discharges and 6% positive sharp waves in affected cats. Muscles of the proximal limbs were most frequently affected. No differences in NCV were found between the three cat groups. It was concluded that dystrophin-deficient dystrophic cats have widespread and frequent EMG changes, predominantly myotonic discharges and fibrillation potentials, which are most pronounced in the proximal appendicular muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No treatment is available for patients affected by the recessively inherited, progressive muscular dystrophies caused by a deficiency in the muscle membrane repair protein dysferlin. A marked reduction in dysferlin in patients harboring missense mutations in at least one of the two pathogenic DYSF alleles encoding dysferlin implies that dysferlin is degraded by the cell's quality control machinery. In vitro evidence suggests that missense mutated dysferlin might be functional if salvaged from degradation by the proteasome. We treated three patients with muscular dystrophy due to a homozygous Arg555Trp mutation in dysferlin with the proteasome inhibitor bortezomib and monitored dysferlin expression in monocytes and in skeletal muscle by repeated percutaneous muscle biopsy. Expression of missense mutated dysferlin in the skeletal muscle and monocytes of the three patients increased markedly, and dysferlin was correctly localized to the sarcolemma of muscle fibers on histological sections. Salvaged missense mutated dysferlin was functional in a membrane resealing assay in patient-derived muscle cells treated with three different proteasome inhibitors. We conclude that interference with the proteasomal system increases expression of missense mutated dysferlin, suggesting that this therapeutic strategy may benefit patients with dysferlinopathies and possibly other genetic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the illumina sequencing technology we obtained a whole genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared to the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single private non-synonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than one thousand control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. Based on the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a severe striated muscle disease due to the absence of dystrophin. Dystrophin deficiency results in dysfunctional sodium channels and conduction abnormalities in hearts of mdx mice. Disease progression in the mdx mouse only modestly reflects that of DMD patients, possibly due to utrophin up-regulation. Here, we investigated mice deficient in both dystrophin and utrophin [double knockout (DKO)] to assess the role of utrophin in the regulation of the cardiac sodium channel (Na(v)1.5) in mdx mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene transfer using electroporation is an essential method for the study of developmental biology, especially to understand the internal control of degeneration and apoptosis of the muscle cells that occurs earlier and quicker than the usual degeneration process occurring by aging. Such experimental studies may have a role in developing new strategies for treating patients suffering from inherited primary myopathies such as Duchenne muscular dystrophy (DMD). The present study was designed to evaluate the feasibility of electroporation mediated transfer of reporter genes to the diaphragm in vivo. This is the first report of gene transfer of naked plasmid DNA into the diaphragm muscle in vivo using electroporation. Our results showed that in vivo gene transfer of naked plasmid DNA into the diaphragm muscle using electroporation is feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cases of Duchenne muscular dystrophy are caused by dystrophin gene mutations that disrupt the mRNA reading frame. Artificial exclusion (skipping) of a single exon would often restore the reading frame, giving rise to a shorter, but still functional dystrophin protein. Here, we analyzed the ability of antisense U7 small nuclear (sn)RNA derivatives to alter dystrophin pre-mRNA splicing. As a proof of principle, we first targeted the splice sites flanking exon 23 of dystrophin pre-mRNA in the wild-type muscle cell line C2C12 and showed precise exon 23 skipping. The same strategy was then successfully adapted to dystrophic immortalized mdx muscle cells where exon-23-skipped dystrophin mRNA rescued dystrophin protein synthesis. Moreover, we observed a stimulation of antisense U7 snRNA expression by the murine muscle creatine kinase enhancer. These results demonstrate that alteration of dystrophin pre-mRNA splicing could correct dystrophin gene mutations by expression of specific U7 snRNA constructs.