21 resultados para drug mechanism
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Differentiation between external contamination and incorporation of drugs or their metabolites from inside the body via blood, sweat or sebum is a general issue in hair analysis and of high concern when interpreting analytical results. In hair analysis for cannabinoids the most common target is Delta9-tetrahydrocannabinol (THC), sometimes cannabidiol (CBD) and cannabinol (CBN) are determined additionally. After repeated external contamination by cannabis smoke these analytes are known to be found in hair even after performing multiple washing steps. A widely accepted strategy to unequivocally prove active cannabis consumption is the analysis of hair extracts for the oxidative metabolite 11-nor-9-carboxy-THC (THC-COOH). Although the acidic nature of this metabolite suggests a lower rate of incorporation into the hair matrix compared to THC, it is not fully understood up to now why hair concentrations of THC-COOH are generally found to be much lower (mostly <10 pg/mg) than the corresponding THC concentrations. Delta9-Tetrahydrocannabinolic acid A (THCA A) is the preliminary end product of the THC biosynthesis in the cannabis plant. Unlike THC it is non-psychoactive and can be regarded as a 'precursor' of THC being largely decarboxylated when heated or smoked. The presented work shows for the first time that THCA A is not only detectable in blood and urine of cannabis consumers but also in THC positive hair samples. A pilot experiment performed within this study showed that after oral intake of THCA A on a regular basis no relevant incorporation into hair occurred. It can be concluded that THCA A in hair almost exclusively derives from external contamination e.g. by side stream smoke. Elevated temperatures during the analytical procedure, particularly under alkaline conditions, can lead to decarboxylation of THCA A and accordingly increase THC concentrations in hair. Additionally, it has to be kept in mind that in hair samples tested positive for THCA A at least a part of the 'non-artefact' THC probably derives from external contamination as well, because in condensate of cannabis smoke both THC and THCA A are present in relevant amounts. External contamination by side stream smoke could therefore explain the great differences in THC and THC-COOH hair concentrations commonly found in cannabis users.
Resumo:
Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd).
Resumo:
Drug hypersensitivity reactions can occur with most drugs, are unpredictable, may affect any organ or system, and range widely in clinical severity from mild pruritus to anaphylaxis. In most cases, the suspected drug is avoided in the future. However, for certain patients, the particular drug may be essential for optimal therapy. Under these circumstances, desensitization may be performed. Drug desensitization is defined as the induction of a temporary state of tolerance of a compound responsible for a hypersensitivity reaction. It is performed by administering increasing doses of the medication concerned over a short period of time (from several hours to a few days) until the total cumulative therapeutic dose is achieved and tolerated. It is a high-risk procedure used only in patients in whom alternatives are less effective or not available after a positive risk/benefit analysis. Desensitization protocols have been developed and are used in patients with allergic reactions to antibiotics (mainly penicillin), insulins, sulfonamides, chemotherapeutic and biologic agents, and many other drugs. Desensitization is mainly performed in IgE-mediated reactions, but also in reactions where drug-specific IgE have not been demonstrated. Desensitization induces a temporary tolerant state, which can only be maintained by continuous administration of the medication. Thus, for treatments like chemotherapy, which have an average interval of 4 weeks between cycles, the procedure must be repeated for every new course. In this paper, some background information on rapid desensitization procedures is provided. We define the drugs and drug reactions indicated for such procedures, describe the possible mechanism of action, and discuss the indications and contraindications. The data should serve as background information for a database (accessible via the EAACI-homepage) with standardized protocols for rapid desensitization for antibiotics, chemotherapeutic agents, monoclonal antibodies/fusion proteins, and other drugs.
Resumo:
Clinicians commonly encounter patients who report to have drug allergy. In a large part, such allergy corresponds to adverse drug reactions, which are not immune mediated. The incriminated drug need not always be avoided for further therapy. On the other hand, drug allergy may manifest in many unexpected clinical pictures and thus not be recognized. There is no single standardized diagnostic test to confirm the immune-mediated mechanism and to identify the causative drug. Therefore, immune-mediated drug hypersensitivity reactions and their causative drugs have to be considered by the constellation of exposure, timing, and clinical features, including the pattern of organ manifestation. Prior experience with the drug is also an important feature. An allergologic workup with additional investigation may provide some help. Patients should be informed carefully about their drug allergy, whereby symptoms, drug that elicits reaction, modes of diagnosis of drug allergy, and possibly alternatives should be indicated in their allergy passport.
Resumo:
Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.
Resumo:
Background—Pathology studies on fatal cases of very late stent thrombosis have described incomplete neointimal coverage as common substrate, in some cases appearing at side-branch struts. Intravascular ultrasound studies have described the association between incomplete stent apposition (ISA) and stent thrombosis, but the mechanism explaining this association remains unclear. Whether the neointimal coverage of nonapposed side-branch and ISA struts is delayed with respect to well-apposed struts is unknown. Methods and Results—Optical coherence tomography studies from 178 stents implanted in 99 patients from 2 randomized trials were analyzed at 9 to 13 months of follow-up. The sample included 38 sirolimus-eluting, 33 biolimus-eluting, 57 everolimus-eluting, and 50 zotarolimus-eluting stents. Optical coherence tomography coverage of nonapposed side-branch and ISA struts was compared with well-apposed struts of the same stent by statistical pooled analysis with a random-effects model. A total of 34 120 struts were analyzed. The risk ratio of delayed coverage was 9.00 (95% confidence interval, 6.58 to 12.32) for nonapposed side-branch versus well-apposed struts, 9.10 (95% confidence interval, 7.34 to 11.28) for ISA versus well-apposed struts, and 1.73 (95% confidence interval, 1.34 to 2.23) for ISA versus nonapposed side-branch struts. Heterogeneity of the effect was observed in the comparison of ISA versus well-apposed struts (H=1.27; I2=38.40) but not in the other comparisons. Conclusions—Coverage of ISA and nonapposed side-branch struts is delayed with respect to well-apposed struts in drug-eluting stents, as assessed by optical coherence tomography.
Resumo:
Phosphatidylinositol 3-kinases (PI3Ks) are key molecules in the signal transduction pathways initiated by the binding of extracellular signals to their cell surface receptors. The PI3K family of enzymes comprises eight catalytic isoforms subdivided into three classes and control a variety of cellular processes including proliferation, growth, apoptosis, migration and metabolism. Deregulation of the PI3K pathway has been extensively investigated in connection to cancer, but is also involved in other commonly occurring diseases such as chronic inflammation, autoimmunity, allergy, atherosclerosis, cardiovascular and metabolic diseases. The fact that the PI3K pathway is deregulated in a large number of human diseases, and its importance for different cellular responses, makes it an attractive drug target. Pharmacological PI3K inhibitors have played a very important role in studying cellular responses involving these enzymes. Currently, a wide range of selective PI3K inhibitors have been tested in preclinical studies and some have entered clinical trials in oncology. However, due to the complexity of PI3K signaling pathways, developing an effective anti-cancer therapy may be difficult. The biggest challenge in curing cancer patients with various signaling pathway abnormalities is to target multiple components of different signal transduction pathways with mechanism-based combinatorial treatments. In this article we will give an overview of the complex role of PI3K isoforms in human diseases and discuss their potential as drug targets. In addition, we will describe the drugs currently used in clinical trials, as well as promising emerging candidates.
Resumo:
Once administered, a drug can activate the immune system by various mechanisms and lead to a large range of clinical manifestations closely related to the type of immune reaction elicited. Administration of the drug can classically result in an immunoglobulin E (IgE)-type sensitization, but can also result in more complex activation of the immune system potentially resulting in severe syndromes, such as the drug-induced hypersensitivity syndrome (DIHS). Although there has been a major increase in our knowledge over the last years, the exact mechanisms of drug allergy are not well understood for most clinical manifestations. A complex interaction between individual characteristics, environmental factors, and the drug itself is usually responsible for adverse reactions to drugs. In this educational review series, we described three cases of drug allergy: first, a child with a typical IgE-mediated drug allergy, second, a child with a non-immediate reaction to penicillin, and in the third patient, we will discuss the drug-induced hypersensitivity syndrome, which is rare but potentially fatal. These cases are correlated to the immune mechanism potentially involved.
Resumo:
The increasing demand for novel anti-parasitic drugs due to resistance formation to well-established chemotherapeutically important compounds has increased the demands for a better understanding of the mechanism(s) of action of existing drugs and of drugs in development. While different approaches have been developed to identify the targets and thus mode of action of anti-parasitic compounds, it has become clear that many drugs act not only on one, but possibly several parasite molecules or even pathways. Ideally, these targets are not present in any cells of the host. In the case of apicomplexan parasites, the unique apicoplast, provides a suitable target for compounds binding to DNA or ribosomal RNA of prokaryotic origin. In the case of intracellular pathogens, a given drug might not only affect the pathogen by directly acting on parasite-associated targets, but also indirectly, by altering the host cell physiology. This in turn could affect the parasite development and lead to parasite death. In this review, we provide an overview of strategies for target identification, and present examples of selected drug targets, ranging from proteins to nucleic acids to intermediary metabolism.
Resumo:
The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomitantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves comparable mechanisms of actions.
Resumo:
Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.
Resumo:
Drug-eluting stents (DES) have reduced the risk of repeat revascularization procedures by 50-70% compared with bare metal stents across a wide range of lesion and patients subsets. Stent thrombosis is a rare but devastating adverse event, which results in abrupt closure of the treated artery with the incumbent risk of sudden death or myocardial infarction. Although stent thrombosis has been recognized as a shortcoming of coronary artery stents since there inception, very late stent thrombosis occurring more than one year after stent implantation emerged as a new entity complicating the use of DES. The mechanisms leading to very late ST are complex and only incompletely understood. Delayed healing and incomplete re-endothelialization emerged as prevailing mechanism of thrombosis in autopsy studies. Various components of DES may give rise to very late stent thrombosis, notably the polymers used for controlled drug-release. Newer generation DES attempt to address these concerns by aiming at improved vascular healing while maintaining potent neointimal suppression.
Resumo:
We identified English-language publications on hypersensitivity reactions to xenobiotics through the PubMed database, using the search terms drug and/or xenobiotic, hypersensitivity reaction, mechanism, and immune mediated. We analyzed articles pertaining to the mechanism and the role of T cells. Immune hypersensitivity reactions to drugs are mediated predominantly by IgE antibodies or T cells. The mechanism of IgE-mediated reactions is well investigated, but the mechanisms of T-cell-mediated drug hypersensitivity are not well understood. The literature describes 2 concepts: the hapten/prohapten concept and the concept of pharmacological interactions of drugs with immune receptors. In T-cell-mediated allergic drug reactions, the specificity of the T-cell receptor that is stimulated by the drug may often be directed to a cross-reactive major histocompatibility complex-peptide compound. Thus, previous contact with the causative drug is not obligatory, and an immune mechanism should be considered as the cause of hypersensitivity, even in reactions that occur on primary exposure. Indeed, immune-mediated reactions to xenobiotics in patients without prior exposure to the agent have been described recently for radiocontrast media and neuromuscular blocking agents. Thus, the "allergenic" potential of a drug under development should be evaluated not only by screening its haptenlike characteristics but also by assessing its direct immunostimulatory potential.
Resumo:
Drug allergies are adverse drug reactions mediated by the specific immune system. Despite characteristic signs (eg, skin rash) that raise awareness for possible drug allergies, they are great imitators of disease and may hide behind unexpected symptoms. No single standardized diagnostic test can confirm the immune-mediated mechanism or identify the causative drug; therefore, immune-mediated drug hypersensitivity reactions and their causative drugs must be recognized by the constellation of exposure, timing, and clinical features including the pattern of organ manifestation. Additional allergologic investigations (skin tests, in vitro tests, provocation tests) may provide help in identifying the possible eliciting drug.
Resumo:
The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite.