82 resultados para drug induced abortion

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cytotoxic cells are involved in most forms of drug-induced skin diseases. Till now, no in vitro test addressed this aspect of drug-allergic responses. Our report evaluates whether drug-induced cytotoxic cells can be detected in peripheral blood of nonacute patients with different forms of drug hypersensitivity, and also whether in vitro detection of these cells could be helpful in drug-allergy diagnosis. METHODS: GranzymeB enzyme-linked immunosorbent spot-forming (ELISPOT) and cell surface expression of the degranulation marker CD107a were evaluated on peripheral blood mononuclear cells from 12 drug-allergic patients in remission state and 16 drug-exposed healthy controls. RESULTS: In 10/12 allergic patients culprit but not irrelevant drug elicited granzymeB release after 48-72 h stimulation. It was clearly positive in patients with high proliferative response to the drug, measured in lymphocyte transformation tests. In patients, who showed moderate or low proliferation and low drug-response in granzymeB ELISPOT, overnight preincubation with interleukin (IL)-7/IL-15 enhanced drug-specific granzymeB release and allowed to clearly identify the offending agent. CD107a staining was positive on CD4+/CD3+, CD8+/CD3+ T cells as well as CD56+/CD3- natural killer cells. None of the drug-exposed healthy donors reacted to the tested drugs and allergic patients reacted only to the offending, but not to tolerated drugs. CONCLUSION: GranzymeB ELISPOT is a highly specific in vitro method to detect drug-reacting cytotoxic cells in peripheral blood of drug-allergic patients even several years after disease manifestation. Together with IL-7/IL-15 preincubation, it may be helpful in indentifying the offending drug even in some patients with weak proliferative drug-response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olfactory impairment has been reported in drug-induced parkinsonism (DIP), but the relationship between dopaminergic dysfunction and smell deficits in DIP patients has not been characterized. To this end, we studied 16 DIP patients and 13 patients affected by Parkinson's disease (PD) using the "Sniffin' Sticks" test and [(123)I] FP-CIT SPECT (single-photon emission computed tomography). DIP patients were divided based on normal (n = 9) and abnormal (n = 7) putamen dopamine transporter binding. Nineteen healthy age- and sex-matched subjects served as controls of smell function. Patients with DIP and pathological putamen uptake had abnormal olfactory function. In this group of patients, olfactory TDI scores (odor threshold, discrimination and identification) correlated significantly with putamen uptake values, as observed in PD patients. By contrast, DIP patients with normal putamen uptake showed odor functions-with the exception of the threshold subtest-similar to control subjects. In this group of patients, no significant correlation was observed between olfactory TDI scores and putamen uptake values. The results of our study suggest that the presence of smell deficits in DIP patients might be more associated with dopaminergic loss rather than with a drug-mediated dopamine receptor blockade. These preliminary results might have prognostic and therapeutic implications, as abnormalities in these individuals may be suggestive of an underlying PD-like neurodegenerative process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug-induced interstitial nephritis can be caused by a plethora of drugs and is characterized by a sudden impairment of renal function, mild proteinuria, and sterile pyuria. For investigation of the possible pathomechanism of this disease, drug-specific T cells were analyzed, their function was characterized, and these in vitro findings were correlated to histopathologic changes that were observed in kidney biopsy specimens. Peripheral blood mononuclear cells from three patients showed a proliferative response to only one of the administered drugs, namely flucloxacillin, penicillin G, and disulfiram, respectively. The in vitro analysis of the flucloxacillin-reactive cells showed an oligoclonal immune response with an outgrowth of T cells bearing the T cell receptor Vbeta9 and Vbeta21.3. Moreover, flucloxacillin-specific T cell clones could be generated from peripheral blood, they expressed CD4 and the alphabeta-T cell receptor, and showed a heterogeneous cytokine secretion pattern with no clear commitment to either a Th1- or Th2-type response. The immunohistochemistry of kidney biopsies of these patients revealed cell infiltrations that consisted mostly of T cells (CD4+ and/or CD8+). An augmented presence of IL-5, eosinophils, neutrophils, CD68+ cells, and IL-12 was observed. In agreement with negative cytotoxicity assays, no cytotoxicity-related molecules such as Fas and perforin were detected by immunohistochemistry. The data indicate that drug-specific T cells are activated locally and orchestrate a local inflammation via secretion of various cytokines, the type of which depends on the cytokine pattern secreted and which probably is responsible for the renal damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring antibiotic-induced killing relies on time-consuming biological tests. The firefly luciferase gene (luc) was successfully used as a reporter gene to assess antibiotic efficacy rapidly in slow-growing Mycobacterium tuberculosis. We tested whether luc expression could also provide a rapid evaluation of bactericidal drugs in Streptococcus gordonii. The suicide vectors pFW5luc and a modified version of pJDC9 carrying a promoterless luc gene were used to construct transcriptional-fusion mutants. One mutant susceptible to penicillin-induced killing (LMI2) and three penicillin-tolerant derivatives (LMI103, LMI104, and LMI105) producing luciferase under independent streptococcal promoters were tested. The correlation between antibiotic-induced killing and luminescence was determined with mechanistically unrelated drugs. Chloramphenicol (20 times the MIC) inhibited bacterial growth. In parallel, luciferase stopped increasing and remained stable, as determined by luminescence and Western blots. Ciprofloxacin (200 times the MIC) rapidly killed 1.5 log10 CFU/ml in 2-4 hr. Luminescence decreased simultaneously by 10-fold. In contrast, penicillin (200 times the MIC) gave discordant results. Although killing was slow (< or = 0.5 log10 CFU/ml in 2 hr), luminescence dropped abruptly by 50-100-times in the same time. Inactivating penicillin with penicillinase restored luminescence, irrespective of viable counts. This was not due to altered luciferase expression or stability, suggesting some kind of post-translational modification. Luciferase shares homology with aminoacyl-tRNA synthetase and acyl-CoA ligase, which might be regulated by macromolecule synthesis and hence affected in penicillin-inhibited cells. Because of resemblance, luciferase might be down-regulated simultaneously. Luminescence cannot be universally used to predict antibiotic-induced killing. Thus, introducing reporter enzymes sharing mechanistic similarities with normal metabolic reactions might reveal other effects than those expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q-T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We identified English-language publications on hypersensitivity reactions to xenobiotics through the PubMed database, using the search terms drug and/or xenobiotic, hypersensitivity reaction, mechanism, and immune mediated. We analyzed articles pertaining to the mechanism and the role of T cells. Immune hypersensitivity reactions to drugs are mediated predominantly by IgE antibodies or T cells. The mechanism of IgE-mediated reactions is well investigated, but the mechanisms of T-cell-mediated drug hypersensitivity are not well understood. The literature describes 2 concepts: the hapten/prohapten concept and the concept of pharmacological interactions of drugs with immune receptors. In T-cell-mediated allergic drug reactions, the specificity of the T-cell receptor that is stimulated by the drug may often be directed to a cross-reactive major histocompatibility complex-peptide compound. Thus, previous contact with the causative drug is not obligatory, and an immune mechanism should be considered as the cause of hypersensitivity, even in reactions that occur on primary exposure. Indeed, immune-mediated reactions to xenobiotics in patients without prior exposure to the agent have been described recently for radiocontrast media and neuromuscular blocking agents. Thus, the "allergenic" potential of a drug under development should be evaluated not only by screening its haptenlike characteristics but also by assessing its direct immunostimulatory potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Herbal and dietary supplements are widely used as measures to improve and preserve health and well-being. Among the bestselling preparations are dietary supplement containing glucosamine and chondroitine sulfate taken to improve symptoms of osteoarthritis. METHODS AND RESULTS We here present a case of a male patient with biopsy-proven acute and severe autoimmune hepatitis subsequent to intake of a preparation containing glucosamine and chondroitine sulfate. Response to steroids was favorable and resulted in complete remission of the patient. Diagnostic work-up of the case revealed no other possible cause of liver injury, and causality assessment using the Roussel Uclaf Causality Assessment Method (RUCAM) resulted in a possible causal relationship between intake of glucosamine and chondroitine sulfate and the adverse hepatic reaction. CONCLUSION The present case recalls that products containing glucosamine and chondroitine sulfate can occasionally cause acute liver injury mimicking autoimmune hepatitis, and reminds of the potential dangers of compounds with poor efficacy and ill-defined safety records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stevens-Johnson syndrome is a severe potentially life-threatening form of the erythema multiforme, affecting both skin and mucous membranes. We present a case of a 49-year-old male patient with AIDS who developed a Stevens-Johnson syndrome while being treated with pyrimethamine, sulfadiazine and phenytoin for cerebral toxoplasmosis. Further diagnostic evaluation of this dangerous cutaneous affection may prove difficult for several reasons. In particular, in patients with AIDS who are more susceptible for adverse drug reactions and who are simultaneously receiving a variety of drugs with a considerable potential of cutaneous side effects, therapy cannot be withhold for lack of therapeutic alternatives. Moreover, the low lymphocyte count in this case may have made reliable testing with lymphocyte transformation studies impossible. The evaluation and the differential diagnosis of the drug-induced Stevens-Johnson syndrome are discussed. Especially long- and moderately long-acting sulfonamides belong to the most important agents that can cause a drug-induced Stevens-Johnson syndrome. The pathogenesis and the risk factors for cutaneous hypersensitivity reactions in HIV-infected patients are only poorly understood. These kind of reactions, however, seem to occur more often in patients with a more advanced immunodeficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human African trypanosomiasis (sleeping sickness) is a neglected tropical disease caused by Trypanosoma brucei spp. The parasites are transmitted by tsetse flies and adapt to their different hosts and environments by undergoing a series of developmental changes. During differentiation, the trypanosome alters its protein coat. Bloodstream form trypanosomes in humans have a coat of variant surface glycoprotein (VSG) that shields them from the immune system. The procyclic form, the first life-cycle stage to develop in the tsetse fly, replaces the VSG coat by procyclins; these proteins do not protect the parasite from lysis by serum components. Our study exploits the parasite-specific process of differentiation from bloodstream to procyclic forms to screen for potential drug candidates. Using transgenic trypanosomes with a reporter gene in a procyclin locus, we established a whole-cell assay for differentiation in a medium-throughput format. We screened 7,495 drug-like compounds and identified 28 hits that induced expression of the reporter and loss of VSG at concentrations in the low micromolar range. Small molecules that induce differentiation to procyclic forms could facilitate studies on the regulation of differentiation as well as serving as scaffolds for medicinal chemistry for new treatments for sleeping sickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Although it has been well established that methadone use can result in prolonged QTc/torsades de pointes (TdP) and has been labeled as one of the main drugs that cause TdP, it is still prescribed indiscriminately, and several cases of methadone-associated TdP have been seen in our community. METHODS Our objective was to determine the associated factors for prolonged QTc and the development of torsades de pointes (TdP) in our underserved patient population. We found 12,550 ECGs with prolonged QTc between 2002 and 2013. Medical records were reviewed in order to identify precipitating factors for prolonged QTc and to detect incidence of TdP. RESULTS We identified 2735 patients with prolonged QTc who met the inclusion criteria. Of these, 89 (3%) experienced TdP. There was a greater prevalence of HIV infection in the TdP group (11.2 vs. 3.7%, p < 0.001). Furosemide, hydrochlorothiazide, selective serotonin reuptake inhibitors (SSRIs), amiodarone, ciprofloxacin, methadone, haloperidol, and azithromycin were the drugs most often associated with prolonged QTc (31, 8.2, 7.6, 7.1, 3.9, 3.4 and 3.3%, respectively). However, the agents most commonly associated with TdP were furosemide (39.3%), methadone (27%), SSRIs (19.1%), amiodarone (18%), and dofetilide (9%). The medications with statistical significance in the multivariate analysis for TdP development in descending order were as follows: ranolazine (odds ratios [OR] = 53.61, 95% confidence interval [CI] 5.4-524, p < 0.001), dofetilide (OR = 25, CI 6.47-103.16, p < 0.001), voriconazole (OR = 21.40, CI 3.24-124.25, p < 0.001), verapamil (OR = 10.98, CI 2.62-44.96, p < 0.001), sotalol (OR = 12.72, 1.95-82.81, p = 0.008), methadone (OR = 9.89, CI 4.05-24.15, p < 0.001), and SSRI (OR = 2.26, CI 1.10-5.96, p < 0.001). This multivariate analysis revealed that amiodarone and HIV infection were not implicated in TdP. CONCLUSION Methadone was by far the leading medication implicated in the development of TdP and an independent predictor in both univariate and multivariate analyses despite the fact that it was not the most common QT-prolonging medication in our population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.