14 resultados para drug addition

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Failing cerebral blood flow (CBF) autoregulation may contribute to cerebral damage after traumatic brain injury (TBI). The purpose of this study was to describe the time course of CO(2)-dependent vasoreactivity, measured as CBF velocity in response to hyperventilation (vasomotor reactivity [VMR] index). We included 13 patients who had had severe TBI, 8 of whom received norepinephrine (NE) based on clinical indication. In these patients, measurements were also performed after dobutamine administration, with a goal of increasing cardiac output by 30%. Blood flow velocity was measured with transcranial Doppler ultrasound in both hemispheres. All patients except one had an abnormal VMR index in at least one hemisphere within the first 24 h after TBI. In those patients who did not receive catecholamines, mean VMR index recovered within the first 48 to 72 h. In contrast, in patients who received NE within the first 48 h period, VMR index did not recover on the second day. Cardiac output and mean CBF velocity increased significantly during dobutamine administration, but VMR index did not change significantly. In conclusion, CO(2) vasomotor reactivity was abnormal in the first 24 h after TBI in most of the patients, but recovered within 48 h in those patients who did not receive NE, in contrast to those eventually receiving the drug. Addition of dobutamine to NE had variable but overall insignificant effects on CO(2) vasomotor reactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-drug interaction between statins metabolised by cytochrome P450 3A4 and clopidogrel have been claimed to attenuate the inhibitory effect of clopidogrel. However, published data regarding this drug-drug interaction are controversial. We aimed to determine the effect of fluvastatin and atorvastatin on the inhibitory effect of dual antiplatelet therapy with acetylsalicylic acid (ASA) and clopidogrel. One hundred one patients with symptomatic stable coronary artery disease undergoing percutaneous coronary intervention and drug-eluting stent implantation were enrolled in this prospective randomised study. After an interval of two weeks under dual antiplatelet therapy with ASA and clopidogrel, without any lipid-lowering drug, 87 patients were randomised to receive a treatment with either fluvastatin 80 mg daily or atorvastatin 40 mg daily in addition to the dual antiplatelet therapy for one month. Platelet aggregation was assessed using light transmission aggregometry and whole blood impedance platelet aggregometry prior to randomisation and after one month of receiving assigned statin and dual antiplatelet treatment. Platelet function assessment after one month of statin and dual antiplatelet therapy did not show a significant change in platelet aggregation from 1st to 2nd assessment for either statin group. There was also no difference between atorvastatin and fluvastatin treatment arms. In conclusion, neither atorvastatin 40 mg daily nor fluvastatin 80 mg daily administered in combination with standard dual antiplatelet therapy following coronary drug-eluting stent implantation significantly interfere with the antiaggregatory effect of ASA and clopidogrel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical circuitry. Alterations in gamma band oscillations have attracted a great deal of interest as they appear to represent a pathophysiological process of cortical dysfunction in schizophrenia. Gamma band oscillations reflect local cortical activities, and the synchronization of these activities among spatially distributed cortical areas has been suggested to play a central role in the formation of networks. To assess global coordination across spatially distributed brain regions, Omega complexity (OC) in multichannel EEG was proposed. Using OC, we investigated global coordination of resting-state EEG activities in both gamma (30–50 Hz) and below-gamma (1.5–30 Hz) bands in drug-naïve patients with schizophrenia and investigated the effects of neuroleptic treatment. We found that gamma band OC was significantly higher in drug-naïve patients with schizophrenia compared to control subjects and that a right frontal electrode (F3) contributed significantly to the higher OC. After neuroleptic treatment, reductions in the contribution of frontal electrodes to global OC in both bands correlated with the improvement of schizophrenia symptomatology. The present study suggests that frontal brain processes in schizophrenia were less coordinated with activity in the remaining brain. In addition, beneficial effects of neuroleptic treatment were accompanied by improvement of brain coordination predominantly due to changes in frontal regions. Our study provides new evidence of improper intrinsic brain integration in schizophrenia by investigating the resting-state gamma band activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinases (PI3Ks) are key molecules in the signal transduction pathways initiated by the binding of extracellular signals to their cell surface receptors. The PI3K family of enzymes comprises eight catalytic isoforms subdivided into three classes and control a variety of cellular processes including proliferation, growth, apoptosis, migration and metabolism. Deregulation of the PI3K pathway has been extensively investigated in connection to cancer, but is also involved in other commonly occurring diseases such as chronic inflammation, autoimmunity, allergy, atherosclerosis, cardiovascular and metabolic diseases. The fact that the PI3K pathway is deregulated in a large number of human diseases, and its importance for different cellular responses, makes it an attractive drug target. Pharmacological PI3K inhibitors have played a very important role in studying cellular responses involving these enzymes. Currently, a wide range of selective PI3K inhibitors have been tested in preclinical studies and some have entered clinical trials in oncology. However, due to the complexity of PI3K signaling pathways, developing an effective anti-cancer therapy may be difficult. The biggest challenge in curing cancer patients with various signaling pathway abnormalities is to target multiple components of different signal transduction pathways with mechanism-based combinatorial treatments. In this article we will give an overview of the complex role of PI3K isoforms in human diseases and discuss their potential as drug targets. In addition, we will describe the drugs currently used in clinical trials, as well as promising emerging candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitazoxanide (NTZ) and several NTZ-derivatives (thiazolides) have been shown to exhibit considerable anti-Neospora caninum tachyzoite activity in vitro. We coupled tizoxanide (TIZ), the deacetylated metabolite, to epoxy-agarose-resin and performed affinity chromatography with N. caninum tachyzoite extracts. Two main protein bands of 52 and 43kDa were isolated. The 52kDa protein was readily recognized by antibodies directed against NcPDI, and mass spectrometry confirmed its identity. Poly-histidine-tagged NcPDI-cDNA was expressed in Escherichia coli and recombinant NcPDI (recNcPDI) was purified by Co2+-affinity chromatography. By applying an enzyme assay based on the measurement of insulin crosslinking activity, recNcPDI exhibited properties reminiscent for PDIs, and its activity was impaired upon the addition of classical PDI inhibitors such as bacitracin (1-2mM), para-chloromercuribenzoic acid (0.1-1mM) and tocinoic acid (0.1-1mM). RecNcPDI-mediated insulin crosslinking was inhibited by NTZ (5-100 microM) in a dose-dependent manner. In addition, the enzymatic activity of recNcPDI was inhibited by those thiazolides that also affected parasite proliferation. Thus, thiazolides readily interfere with NcPDI, and possibly also with PDIs from other microorganisms susceptible to thiazolides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: To determine the effect of anti-ischaemic drug therapy on long-term outcomes of asymptomatic patients without coronary artery disease (CAD) history but silent exercise ST-depression. METHODS AND RESULTS: In a randomized multicentre trial, 263 of 522 asymptomatic subjects without CAD but at least one CAD risk factor in whom silent ischaemia by exercise ECG was confirmed by stress imaging were asked to participate. The 54 (21%) consenting patients were randomized to anti-anginal drug therapy in addition to risk factor control (MED, n = 26) or risk factor control-only (RFC, n = 28). They were followed yearly for 11.2 +/- 2.2 years. During 483 patient-years, cardiac death, non-fatal myocardial infarction, or acute coronary syndrome requiring hospitalization or revascularization occurred in 3 (12%) of MED vs. 17 (61%) of RFC patients (P < 0.001). In addition, MED patients had consistently lower rates of exercise-induced ischaemia during follow-up, and left ventricular ejection fraction remained unchanged (-0.7%, P = 0.597) in contrast to RFC patients in whom it decreased over time (-6.0%, P = 0.006). CONCLUSION: Anti-ischaemic drug therapy and aspirin seem to reduce cardiac events in subjects with asymptomatic ischaemia type I. In such patients, exercise-induced ST-segment depression should be verified by stress imaging; if silent ischaemia is documented, anti-ischaemic drug therapy and aspirin should be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Based on a subgroup analysis of 18-month BAsel Stent Kosten Effektivitäts Trial (BASKET) outcome data, we hypothesized that very late (> 12 months) stent thrombosis occurs predominantly after drug-eluting stent implantation in large native coronary vessel stenting. METHODS: To prove or refute this hypothesis, we set up an 11-center 4-country prospective trial of 2260 consecutive patients treated with > or = 3.0-mm stents only, randomized to receive Cypher (Johnson ; Johnson, Miami Lakes, FL), Vision (Abbott Vascular, Abbott Laboratories, IL), or Xience stents (Abbott Vascular). Only patients with left main or bypass graft disease, in-stent restenosis or stent thrombosis, in need of nonheart surgery, at increased bleeding risk, without compliance/consent are excluded. All patients are treated with dual antiplatelet therapy for 12 months. The primary end point will be cardiac death/nonfatal myocardial infarction after 24 months with further follow-up up to 5 years. RESULTS: By June 12, 229 patients (10% of the planned total) were included with a baseline risk similar to that of the same subgroup of BASKET (n = 588). CONCLUSIONS: This study will answer several important questions of contemporary stent use in patients with large native vessel stenting. The 2-year death/myocardial infarction-as well as target vessel revascularization-and bleeding rates in these patients with a first- versus second-generation drug-eluting stent should demonstrate the benefit or harm of these stents compared to cobalt-chromium bare-metal stents in this relevant, low-risk group of everyday patients. In addition, a comparison with similar BASKET patients will allow to estimate the impact of 12- versus 6-month dual antiplatelet therapy on these outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antiarrhythmic drugs are used in at least 50% of patients who received an implantable cardioverter defibrillator (ICD). The potential indications for antiarrhythmic drug treatments in patients with an ICD are generally the following: reduction of the number of ventricular tachycardias (VTs) or episodes of ventricular fibrillation and therefore reduction of the number of ICD therapies, most importantly, the number of disabling ICD shocks. Accordingly, the quality of life should be improved and the battery life of the ICD extended. Moreover, antiarrhythmic drugs have the potential to increase the tachycardia cycle length to allow termination of VTs by antitachycardia pacing and reduction of the number of syncopes. In addition, supraventricular arrhythmias can be prevented or their rate controlled. Recently published or reported trials have shown the efficacy of amiodarone, sotalol and azimilide to significantly reduce the number of appropriate and inappropriate ICD shocks in patients with structural heart disease. However, the use of antiarrhythmic drugs may also have adverse effects: an increase in the defibrillation threshold, an excessive increase in the VT cycle length leading to detection failure. In this situation and when antiarrhythmic drugs are ineffective or have to be stopped because of serious side effects, catheter ablation of both monomorphic stable and pleomorphic and/or unstable VTs using modern electroanatomic mapping systems should be considered. The choice of antiarrhythmic drug treatment and the need for catheter ablation in ICD patients with frequent VTs should be individually tailored to specific clinical and electrophysiological features including the frequency, the rate, and the clinical presentation of the ventricular arrhythmia. Although VT mapping and ablation is becoming increasingly practical and efficacious, ablation of VT is mostly done as an adjunctive therapy in patients with structural heart disease and ICD experiencing multiple shocks, because the recurrence and especially the occurrence of "new" VTs after primarily successful ablation with time and disease progression have precluded a widespread use of catheter ablation as primary treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New directly acting antivirals (DAAs) that inhibit hepatitis C virus (HCV) replication are increasingly used for the treatment of chronic hepatitis C. A marked pharmacokinetic variability and a high potential for drug-drug interactions between DAAs and numerous drug classes have been identified. In addition, ribavirin (RBV), commonly associated with hemolytic anemia, often requires dose adjustment, advocating for therapeutic drug monitoring (TDM) in patients under combined antiviral therapy. However, an assay for the simultaneous analysis of RBV and DAAs constitutes an analytical challenge because of the large differences in polarity among these drugs, ranging from hydrophilic (RBV) to highly lipophilic (telaprevir [TVR]). Moreover, TVR is characterized by erratic behavior on standard octadecyl-based reversed-phase column chromatography and must be separated from VRT-127394, its inactive C-21 epimer metabolite. We have developed a convenient assay employing simple plasma protein precipitation, followed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of levels of RBV, boceprevir, and TVR, as well as its metabolite VRT-127394, in plasma. This new, simple, rapid, and robust HPLC-MS/MS assay offers an efficient method of real-time TDM aimed at maximizing efficacy while minimizing the toxicity of antiviral therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The presence of minority nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 variants prior to antiretroviral therapy (ART) has been linked to virologic failure in treatment-naive patients. DESIGN: We performed a large retrospective study to determine the number of treatment failures that could have been prevented by implementing minority drug-resistant HIV-1 variant analyses in ART-naïve patients in whom no NNRTI resistance mutations were detected by routine resistance testing. METHODS: Of 1608 patients in the Swiss HIV Cohort Study, who have initiated first-line ART with two nucleoside reverse transcriptase inhibitors (NRTIs) and one NNRTI before July 2008, 519 patients were eligible by means of HIV-1 subtype, viral load and sample availability. Key NNRTI drug resistance mutations K103N and Y181C were measured by allele-specific PCR in 208 of 519 randomly chosen patients. RESULTS: Minority K103N and Y181C drug resistance mutations were detected in five out of 190 (2.6%) and 10 out of 201 (5%) patients, respectively. Focusing on 183 patients for whom virologic success or failure could be examined, virologic failure occurred in seven out of 183 (3.8%) patients; minority K103N and/or Y181C variants were present prior to ART initiation in only two of those patients. The NNRTI-containing, first-line ART was effective in 10 patients with preexisting minority NNRTI-resistant HIV-1 variant. CONCLUSION: As revealed in settings of case-control studies, minority NNRTI-resistant HIV-1 variants can have an impact on ART. However, the sole implementation of minority NNRTI-resistant HIV-1 variant analysis in addition to genotypic resistance testing (GRT) cannot be recommended in routine clinical settings. Additional associated risk factors need to be discovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abacavir hypersensitivity is a severe hypersensitivity reaction which occurs exclusively in carriers of the HLA-B*57∶01 allele. In vitro culture of PBMC with abacavir results in the outgrowth of abacavir-reacting CD8+ T cells, which release IFNγ and are cytotoxic. How this immune response is induced and what is recognized by these T cells is still a matter of debate. We analyzed the conditions required to develop an abacavir-dependent T cell response in vitro. The abacavir reactivity was independent of co-stimulatory signals, as neither DC maturation nor release of inflammatory cytokines were observed upon abacavir exposure. Abacavir induced T cells arose in the absence of professional APC and stemmed from naïve and memory compartments. These features are reminiscent of allo-reactivity. Screening for allo-reactivity revealed that about 5% of generated T cell clones (n = 136) from three donors were allo-reactive exclusively to the related HLA-B*58∶01. The addition of peptides which can bind to the HLA-B*57∶01-abacavir complex and to HLA-B*58∶01 during the induction phase increased the proportion of HLA-B*58∶01 allo-reactive T cell clones from 5% to 42%. In conclusion, abacavir can alter the HLA-B*57∶01-peptide complex in a way that mimics an allo-allele ('altered self-allele') and create the potential for robust T cell responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allopurinol (ALP) hypersensitivity is a major cause of severe cutaneous adverse reactions and is strongly associated with the HLA-B*58:01 allele. However, it can occur in the absence of this allele with identical clinical manifestations. The immune mechanism of ALP-induced severe cutaneous adverse reactions is poorly understood, and the T cell-reactivity pattern in patients with or without the HLA-B*58:01 allele is not known. To understand the interactions among the drug, HLA, and TCR, we generated T cell lines that react to ALP or its metabolite oxypurinol (OXP) from HLA-B*58:01(+) and HLA-B*58:01(-) donors and assessed their reactivity. ALP/OXP-specific T cells reacted immediately to the addition of the drugs and bypassed intracellular Ag processing, which is consistent with the "pharmacological interaction with immune receptors" (p-i) concept. This direct activation occurred regardless of HLA-B*58:01 status. Although most OXP-specific T cells from HLA-B*58:01(+) donors were restricted by the HLA-B*58:01 molecule for drug recognition, ALP-specific T cells also were restricted to other MHC class I molecules. This can be explained by in silico docking data that suggest that OXP binds to the peptide-binding groove of HLA-B*58:01 with higher affinity. The ensuing T cell responses elicited by ALP or OXP were not limited to particular TCR Vβ repertoires. We conclude that the drug-specific T cells are activated by OXP bound to HLA-B*58:01 through the p-i mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting.