14 resultados para driving forces
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
It is unknown whether transforming growth factor beta1 (TGF-beta1) signaling uniformly participates in fibrogenic chronic liver diseases, irrespective of the underlying origin, or if other cytokines such as interleukin (IL)-13 share in fibrogenesis (e.g., due to regulatory effects on type I pro-collagen expression). TGF-beta1 signaling events were scored in 396 liver tissue samples from patients with diverse chronic liver diseases, including hepatitis B virus (HBV), hepatitis C virus (HCV), Schistosoma japonicum infection, and steatosis/steatohepatitis. Phospho-Smad2 staining correlated significantly with fibrotic stage in patients with HBV infection (n = 112, P < 0.001) and steatosis/steatohepatitis (n = 120, P < 0.01), but not in patients with HCV infection (n = 77, P > 0.05). In tissue with HBx protein expression, phospho-Smad2 was detectable, suggesting a functional link between viral protein expression and TGF-beta1 signaling. For IL-13, immunostaining correlated with fibrotic stage in patients with HCV infection and steatosis/steatohepatitis. IL-13 protein was more abundant in liver tissue lysates from three HCV patients compared with controls, as were IL-13 serum levels in 68 patients with chronic HCV infection compared with 20 healthy volunteers (72.87 +/- 26.38 versus 45.41 +/- 3.73, P < 0.001). Immunohistochemistry results suggest that IL-13-mediated liver fibrogenesis may take place in the absence of phospho-signal transducer and activator of transcription protein 6 signaling. In a subgroup of patients with advanced liver fibrosis (stage > or =3), neither TGF-beta nor IL-13 signaling was detectable. Conclusion: Depending on the cause of liver damage, a predominance of TGF-beta or IL-13 signaling is found. TGF-beta1 predominance is detected in HBV-related liver fibrogenesis and IL-13 predominance in chronic HCV infection. In some instances, the underlying fibrogenic mediator remains enigmatic.
Resumo:
In many regions, tectonic uplift is the main driver of erosion over million-year (Myr) timescales, but climate changes can markedly affect the link between tectonics and erosion, causing transient variations in erosion rates. Here we study the driving forces of millennial to Myr-scale erosion rates in the French Western Alps, as estimated from in situ produced cosmogenic 10Be and a newly developed approach integrating detrital and bedrock apatite fission-track thermochronology. Millennial erosion rates from 10Be analyses vary between ~0.27 and ~1.33 m/kyr, similar to rates measured in adjacent areas of the Alps. Significant positive correlations of millennial erosion rates with geomorphic measures, in particular with the LGM ice thickness, reveal a strong transient morphological and erosional perturbation caused by repeated Quaternary glaciations. The perturbation appears independent of Myr-scale uplift and erosion gradients, with the effect that millennial erosion rates exceed Myr-scale erosion rates only in the internal Alps where the latter are low (<0.4 km/Myr). These areas, moreover, exhibit channels that clearly plot above a general linear positive relation between Myr-scale erosion rates and normalized steepness index. Glacial erosion acts irrespective of rock uplift and thus not only leads to an overall increase in erosion rates but also regulates landscape morphology and erosion rates in regions with considerable spatial gradients in Myr-scale tectonic uplift. Our study demonstrates that climate change, e.g., through occurrence of major glaciations, can markedly perturb landscape morphology and related millennial erosion rate patterns, even in regions where Myr-scale erosion rates are dominantly controlled by tectonics.
Resumo:
Despite its short existence, vascular surgery has already grown out of the scope of a mono-specialty. Meanwhile emerging interests of other competing specialties push into the field of vascular care. Continuous technological innovation drives the need for sub-specialisation to provide disease-centred expertise; however, treatment success equally depends on balanced patient-centred care. Vascular surgeons are amidst this controversy and are currently challenged by their own demand to offer all aspects of vascular care - as "the vascular specialist". This article discusses the natural driving forces towards sub-specialisation and appraises advantages and limitations with respect to the future of integrated vascular care.
Resumo:
Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the host's human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.
Resumo:
BACKGROUND: Rotaviruses (RV) are the most common cause of dehydrating gastroenteritis requiring hospitalisation in children <5 years of age. A new generation of safe and effective RV vaccines is available. Accurate data describing the current burden of RV disease in the community are needed to devise appropriate strategies for vaccine usage. METHODS: Retrospective, population-based analysis of RV hospitalisations in children <5 years of age during a 5-year period (1999-2003) in a both urban and rural area inhabited by 12% of the Swiss population. RESULTS: Of 406 evaluable cases, 328 were community-acquired RV infections in children <5 years of age. RV accounted for 38% of all hospitalisations for gastroenteritis. The overall hospitalisation incidence in the <5-year-old was 1.5/1000 child-years (peak incidence, 2.6/1000 child-years in children aged 13-24 months). The incidence of community-acquired RV hospitalisations was significantly greater in children of non-Swiss origin (3.0 vs. 1.1/1000 child-years, relative risk 2.7; 95% CI 2.2-3.4), who were younger, but tended to be less severely dehydrated on admission than Swiss children. In comparison with children from urban areas, RV hospitalisation incidence was significantly lower among those residing in the remote mountain area (0.71 vs. 1.71/1000 child years, relative risk 2.2, 95% CI 1.6-3.1). CONCLUSION: Population-based RV hospitalisation incidence was low in comparison with other European countries. Significantly greater hospitalisation rates among children living in urban areas and those from non-Swiss families indicate that factors other than the severity of RV-induced dehydration are important driving forces of hospital admission.
Resumo:
Swiss National Research Programs (NRPs) are usually geared to addressing issues of major societal concern. In so doing these programs produce different kinds of knowledge: analytical knowledge necessary for revealing the driving forces, conflicting interests and institutional settings that govern the processes under scrutiny; target knowledge oriented towards revealing the directions in which the processes should be guided; and action knowledge that informs about the means by which this can best be achieved. Analytical knowledge answers the questions “what is the problem?” and “what causes it?” while target knowledge helps to define “what is our vision for the future?” and action knowledge deals with “how can we solve the problem?” Production of these 3 different types of knowledge is usually linked in an iterative process in the course of the research supported in an NRP.
Resumo:
Global investment in Sustainable Land Management (SLM) has been substantial, but knowledge gaps remain. Overviews of where land degradation (LD) is taking place and how land users are addressing the problem using SLM are still lacking for most individual countries and regions. Relevant maps focus more on LD than SLM, and they have been compiled using different methods. This makes it impossible to compare the benefits of SLM interventions and prevents informed decision-making on how best to invest in land. To fill this knowledge gap, a standardised mapping method has been collaboratively developed by the World Overview of Conservation Approaches and Technologies (WOCAT), FAO’s Land Degradation Assessment in Drylands (LADA) project, and the EU’s Mitigating Desertification and Remediating Degraded Land (DESIRE) project. The method generates information on the distribution and characteristics of LD and SLM activities and can be applied at the village, national, or regional level. It is based on participatory expert assessment, documents, and surveys. These data sources are spatially displayed across a land-use systems base map. By enabling mapping of the DPSIR framework (Driving Forces-Pressures-State-Impacts-Responses) for degradation and conservation, the method provides key information for decision-making. It may also be used to monitor LD and conservation following project implementation. This contribution explains the mapping method, highlighting findings made at different levels (national and local) in South Africa and the Mediterranean region. Keywords: Mapping, Decision Support, Land Degradation, Sustainable Land Management, Ecosystem Services, Participatory Expert Assessment
Resumo:
There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are crucial. Thirdly, the presence of remnant continental ice from the preceding glacial has shown to be important when determining the timing of maximum LIG warmth in the Northern Hemisphere. Finally, the results reveal that changes in the monsoon regime exert a strong control on the evolution of LIG temperatures over parts of Africa and India. By listing these inter-model differences, we provide a starting point for future proxy-data studies and the sensitivity experiments needed to constrain the climate simulations and to further enhance our understanding of the temperature evolution of the LIG period.
Resumo:
Emerging infectious diseases (EIDs) continue to significantly threaten human and animal health. While there has been some progress in identifying underlying proximal driving forces and causal mechanisms of disease emergence, the role of distal factors is most poorly understood. This article focuses on analyzing the statistical association between highly pathogenic avian influenza (HPAI) H5N1 and urbanization, land-use diversity and poultry intensification. A special form of the urban transition—peri-urbanization—was hypothesized as being associated with ‘hot-spots’ of disease emergence. Novel metrics were used to characterize these distal risk factors. Our models, which combined these newly proposed risk factors with previously known natural and human risk factors, had a far higher predictive performance compared to published models for the first two epidemiological waves in Viet Nam. We found that when relevant risk factors are taken into account, urbanization is generally not a significant independent risk factor. However, urbanization spatially combines other risk factors leading to peri-urban places being the most likely ‘hot-spots’. The work highlights that peri-urban areas have highest levels of chicken density, duck and geese flock size diversity, fraction of land under rice, fraction of land under aquaculture compared to rural and urban areas. Land-use diversity, which has previously never been studied in the context of HPAI H5N1, was found to be a significant risk factor. Places where intensive and extensive forms of poultry production are collocated were found to be at greater risk.
Resumo:
This paper discusses the effects of global change in African mountains, with the example of Mount Kenya. The geographical focus is the northwestern, semi-arid foot zone of the mountain (Laikipia District). Over the past 50 years, this area has experienced rapid and profound transformation, the respective processes of which are all linked to global change. The main driving forces behind these processes have been political and economic in nature. To these an environmental change factor has been added in recent years – climate change. After introducing the area of research, the paper presents three dimensions of global change that are manifested in the region and largely shape its development: Socio-political change, economic change, environmental change. For the regions northwest of Mount Kenya, climate models predict important changes in rainfall distribution that will have a profound impact on freshwater availability and management. The results presented here are based on research undertaken northwest of Mount Kenya within the framework of a series of long-term Kenyan-Swiss research programmes that began in the early 1980s.
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ESS) in decision-making, and a coherent approach to assess and value ESS is still lacking. There are a lot of different – often context-specific – ESS frameworks with their own definitions and understanding of terms. Based on a thorough review, the EU FP7 project RECARE (www.recare-project.eu) suggests an adapted framework for ecosystem services related to soils that can be used for practical application in preventing and remediating degradation of soils in Europe. This lays the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Similar to many ESS frameworks, the RECARE framework distinguishes between an ecosystem and human well-being part. As the RECARE project is focused on soil threats, this is the starting point on the ecosystem part of the framework. Soil threats affect natural capital, such as soil, water, vegetation, air and animals, and are in turn influenced by those. Within the natural capital, the RECARE framework focuses especially on soil and its properties, classified in inherent and manageable properties. The natural capital then enables and underpins soil processes, while at the same time being affected by those. Soil processes, finally, are the ecosystem’s capacity to provide services, thus they support the provision of soil functions and ESS. ESS may be utilized to produce benefits for individuals and human society. Those benefits are explicitly or implicitly valued by individuals and human society. The values placed on those benefits influence policy and decision-making and thus lead to a societal response. Individual (e.g. farmers’) and societal decision making and policy determine land management and other (human) driving forces, which in turn affect soil threats and natural capital. In order to improve ESS with Sustainable Land Management (SLM) – i.e. measures aimed to prevent or remediate soil threats, the services identified in the framework need to be “manageable” (modifiable) for the stakeholders. To this end, effects of soil threats and prevention / remediation measures are captured by key soil properties as well as through bio-physical (e.g. reduced soil loss), socio-economic (e.g. reduced workload) and socio-cultural (e.g. aesthetics) impact indicators. In order to use such indicators in RECARE, it should be possible to associate the changes in soil processes to impacts of prevention / remediation measures (SLM). This requires the indicators to be sensitive enough to small changes, but still sufficiently robust to provide evidence of the change and attribute it to SLM.
Resumo:
The problem of global security of energy supply is growing in importance. TTIP negotiations represent an opportunity to improve energy security in Europe and negotiate a legal framework for bilateral trade in energy, which could serve as a model for future negotiations at a multilateral level. This paper explores some of the thorniest legal, geopolitical, and economic issues that need to be taken up by TTIP negotiators for the promotion of a secure and sustainable trade in energy between the United States and European Union. It gives an account of the most recent developments in the TTIP negotiations on energy and examines the link between a possible legal framework for energy trade under TTIP and other energy-related regional and international fora. The paper critically assesses the negotiating positions of the European Union and the United States in light of their reciprocal energy profiles and needs. It offers an overview of the critical items most likely to be on top of the TTIP agenda on energy based on a comparative analysis of energy provisions in E.U. and U.S. legislation and in light of the both parties’ interests. Finally, it discusses the main driving forces and inhibiting factors capable of facilitating or rather impeding a successful conclusion of an energy trade deal between the United States and the European Union.