5 resultados para drag reduction measurements

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to investigate to what extent it is possible to use the secondary collimator jaws to reduce the transmitted radiation through the multileaf collimator (MLC) during an intensity modulated radiation therapy (IMRT). A method is developed and introduced where the jaws follow the open window of the MLC dynamically (dJAW method). With the aid of three academic cases (Closed MLC, Sliding-gap, and Chair) and two clinical cases (prostate and head and neck) the feasibility of the dJAW method and the influence of this method on the applied dose distributions are investigated. For this purpose the treatment planning system Eclipse and the Research-Toolbox were used as well as measurements within a solid water phantom were performed. The transmitted radiation through the closed MLC leads to an inhomogeneous dose distribution. In this case, the measured dose within a plane perpendicular to the central axis differs up to 40% (referring to the maximum dose within this plane) for 6 and 15 MV. The calculated dose with Eclipse is clearly more homogeneous. For the Sliding-gap case this difference is still up to 9%. Among other things, these differences depend on the depth of the measurement within the solid water phantom and on the application method. In the Chair case, the dose in regions where no dose is desired is locally reduced by up to 50% using the dJAW method instead of the conventional method. The dose inside the chair-shaped region decreased up to 4% if the same number of monitor units (MU) as for the conventional method was applied. The undesired dose in the volume body minus the planning target volume in the clinical cases prostate and head and neck decreased up to 1.8% and 1.5%, while the number of the applied MU increased up to 3.1% and 2.8%, respectively. The new dJAW method has the potential to enhance the optimization of the conventional IMRT to a further step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To test whether quantitative stress echocardiography using contrast-based myocardial blood flow (MBF, ml x min(-1) x g(-1)) measurements can detect coronary artery disease in humans. METHODS: 48 patients eligible for pharmacological stress testing by myocardial contrast echocardiography (MCE) and willing to undergo subsequent coronary angiography were prospectively enrolled in the study. Baseline and adenosine-induced (140 microg x kg(-1) x min(-1)) hyperaemic MBF was analysed according to a three-coronary-artery-territory model. Vascular territories were categorised into three groups with increasing stenosis severity defined as percentage diameter reduction by quantitative coronary angiography. RESULTS: Myocardial blood flow reserve (MBFR)-that is, the ratio of hyperaemic to baseline MBF, was obtained in 128 (89%) territories. Mean (SD) baseline MBF was 1.073 (0.395) ml x min(-1) x g(-1) and did not differ between territories supplied by coronary arteries with mild (<50% stenosis), moderate (50%-74% stenosis) or severe (>or=75% stenosis) disease. Mean (SD) hyperaemic MBF and MBFR were 2.509 (1.078) ml x min(-1) x g(-1) and 2.54 (1.03), respectively, and decreased linearly (r2 = 0.21 and r2 = 0.39) with stenosis severity. ROC analysis revealed that a territorial MBFR <1.94 detected >or=50% stenosis with 89% sensitivity and 92% specificity. CONCLUSION: Quantitative stress testing based on MBF measurements derived from contrast echocardiography is a new method for the non-invasive and reliable assessment of coronary artery disease in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat-induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat-dependent alterations of thylakoid-associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western-blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non-photochemical fluorescence quenching. Recovery experiments showed that heat-dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat-induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat-dependent reduction of the Rubisco activation state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C4 monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C4 photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C3, C3-C4, C4-like, and C4 species of the dicot genusFlaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C4-like and C4 species than in C3 and C3-C4 species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C4 speciesFlaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C4 plants and therefore is neither a prerequisite nor a consequence of C4photosynthesis.