114 resultados para dorsolateral prefrontal cortex
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Transcranial magnetic stimulation has evolved into a powerful neuroscientific tool allowing to interfere transiently with specific brain functions. In addition, repetitive TMS (rTMS) has long-term effects (e.g. on mood), probably mediated by neurochemical alterations. While long-term safety of rTMS with regard to cognitive functioning is well established from trials exploring its therapeutic efficacy, little is known on whether rTMS can induce changes in cognitive functioning in a time window ranging from minutes to hours, a time in which neurochemical effects correlated with stimulation have been demonstrated. This study examined effects of rTMS on three measures of executive function in healthy subjects who received one single rTMS session (40 trains of 2 s duration 20 Hz stimuli) at the left dorsolateral prefrontal cortex (DLPFC). Compared to a sham condition one week apart, divided attention performance was significantly impaired about 30-60 min after rTMS, while Stroop-interference and performance in the Wisconsin Card Sorting Test was unaffected after rTMS. Repetitive TMS of the left DLPFC, at stimulation parameters used in therapeutic studies, does not lead to a clinically relevant impairment of executive function after stimulation. However, the significant effect on divided attention suggests that cognitive effects of rTMS are not limited to the of acute stimulation, and may possibly reflect known neurochemical alterations induced by rTMS. Sensitive cognitive measures may be useful to trace those short-term effects of rTMS non-invasively in humans.
Resumo:
In the anti-saccade paradigm, subjects are instructed not to make a reflexive saccade to an appearing lateral target but to make an intentional saccade to the opposite side instead. The inhibition of reflexive saccade triggering is under the control of the dorsolateral prefrontal cortex (DLPFC). The critical time interval at which this inhibition takes place during the paradigm, however, is not exactly known. In the present study, we used single-pulse transcranial magnetic stimulation (TMS) to interfere with DLPFC function in 15 healthy subjects. TMS was applied over the right DLPFC either 100 ms before the onset of the visual target (i.e. -100 ms), at target onset (i.e. 0 ms) or 100 ms after target onset (i.e. +100 ms). Stimulation 100 ms before target onset significantly increased the percentage of anti-saccade errors to both sides, while stimulation at, or after, target onset had no significant effect. All three stimulation conditions had no significant influence on saccade latency of correct or erroneous anti-saccades. These findings show that the critical time interval at which the DLPFC controls the suppression of a reflexive saccade in the anti-saccade paradigm is before target onset. In addition, the results suggest the view that the triggering of correct anti-saccades is not under direct control of the DLPFC.
Resumo:
Humans are noted for their capacity to over-ride self-interest in favor of normatively valued goals. We examined the neural circuitry that is causally involved in normative, fairness-related decisions by generating a temporarily diminished capacity for costly normative behavior, a 'deviant' case, through non-invasive brain stimulation (repetitive transcranial magnetic stimulation) and compared normal subjects' functional magnetic resonance imaging signals with those of the deviant subjects. When fairness and economic self-interest were in conflict, normal subjects (who make costly normative decisions at a much higher frequency) displayed significantly higher activity in, and connectivity between, the right dorsolateral prefrontal cortex (DLPFC) and the posterior ventromedial prefrontal cortex (pVMPFC). In contrast, when there was no conflict between fairness and economic self-interest, both types of subjects displayed identical neural patterns and behaved identically. These findings suggest that a parsimonious prefrontal network, the activation of right DLPFC and pVMPFC, and the connectivity between them, facilitates subjects' willingness to incur the cost of normative decisions.
Resumo:
Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to induce lucid dreaming. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed.
Resumo:
In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.
Resumo:
Decisions require careful weighing of the risks and benefits associated with a choice. Some people need to be offered large rewards to balance even minimal risks, whereas others take great risks in the hope for an only minimal benefit. We show here that risk-taking is a modifiable behavior that depends on right hemisphere prefrontal activity. We used low-frequency, repetitive transcranial magnetic stimulation to transiently disrupt left or right dorsolateral prefrontal cortex (DLPFC) function before applying a well known gambling paradigm that provides a measure of decision-making under risk. Individuals displayed significantly riskier decision-making after disruption of the right, but not the left, DLPFC. Our findings suggest that the right DLPFC plays a crucial role in the suppression of superficially seductive options. This confirms the asymmetric role of the prefrontal cortex in decision-making and reveals that this fundamental human capacity can be manipulated in normal subjects through cortical stimulation. The ability to modify risk-taking behavior may be translated into therapeutic interventions for disorders such as drug abuse or pathological gambling.
Resumo:
Studies have shown increased risk taking in healthy individuals after low-frequency repetitive transcranial magnetic stimulation, known to transiently suppress cortical excitability, over the right dorsolateral prefrontal cortex (DLPFC). It appears, therefore, plausible that differential modulation of DLPFC activity, increasing the right while decreasing the left, might lead to decreased risk taking, which could hold clinical relevance as excessively risky decision making is observed in clinical populations leading to deleterious consequences. The goal of the present study was to investigate whether risk-taking behaviors could be decreased using concurrent anodal transcranial direct current stimulation (tDCS) of the right DLPFC, which allows upregulation of brain activity, with cathodal tDCS of the left DLPCF, which downregulates activity. Thirty-six healthy volunteers performed the risk task while they received either anodal over the right with cathodal over the left DLPFC, anodal over the left with cathodal over the right DLPFC, or sham stimulation. We hypothesized that right anodal/left cathodal would decrease risk-taking behavior compared with left anodal/right cathodal or sham stimulation. As predicted, during right anodal/left cathodal stimulation over the DLPFC, participants chose more often the safe prospect compared with the other groups. Moreover, these participants appeared to be insensitive to the reward associated with the prospects. These findings support the notion that the interhemispheric balance of activity across the DLPFCs is critical in decision-making behaviors. Most importantly, the observed suppression of risky behaviors suggests that populations with boundless risk-taking behaviors leading to negative real-life consequences, such as individuals with addiction, might benefit from such neuromodulation-based approaches.
Resumo:
Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.
Resumo:
External circumstances and internal bodily states often change and require organisms to flexibly adapt valuation processes to select the optimal action in a given context. Here, we investigate the neurobiology of context-dependent valuation in 22 human subjects using functional magnetic resonance imaging. Subjects made binary choices between visual stimuli with three attributes (shape, color, and pattern) that were associated with monetary values. Context changes required subjects to deviate from the default shape valuation and to integrate a second attribute in order to comply with the goal to maximize rewards. Critically, this binary choice task did not involve any conflict between opposing monetary, temporal, or social preferences. We tested the hypothesis that interactions between regions of dorsolateral and ventromedial prefrontal cortex (dlPFC; vmPFC) implicated in self-control choices would also underlie the more general function of context-dependent valuation. Consistent with this idea, we found that the degree to which stimulus attributes were reflected in vmPFC activity varied as a function of context. In addition, activity in dlPFC increased when context changes required a reweighting of stimulus attribute values. Moreover, the strength of the functional connectivity between dlPFC and vmPFC was associated with the degree of context-specific attribute valuation in vmPFC at the time of choice. Our findings suggest that functional interactions between dlPFC and vmPFC are a key aspect of context-dependent valuation and that the role of this network during choices that require self-control to adjudicate between competing outcome preferences is a specific application of this more general neural mechanism.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a novel research tool in neurology and psychiatry. It is currently being evaluated as a conceivable alternative to electroconvulsive therapy for the treatment of mood disorders. Eight healthy young (age range 21-25 years) right-handed men without sleep complaints participated in the study. Two sessions at a 1-week interval, each consisting of an adaptation night (sham stimulation) and an experimental night (rTMS in the left dorsolateral prefrontal cortex or sham stimulation; crossover design), were scheduled. In each subject, 40 trains of 2-s duration of rTMS (inter-train interval 28 s) were applied at a frequency of 20 Hz (i.e. 1600 pulses per session) and at an intensity of 90% of the motor threshold. Stimulations were scheduled 80 min before lights off. The waking EEG was recorded for 10-min intervals approximately 30 min prior to and after the 20-min stimulations, and polysomnographic recordings were obtained during the subsequent sleep episode (23.00-07.00 h). The power spectra of two referential derivations, as well as of bipolar derivations along the antero-posterior axis over the left and right hemispheres, were analyzed. rTMS induced a small reduction of sleep stage 1 (in min and percentage of total sleep time) over the whole night and a small enhancement of sleep stage 4 during the first non-REM sleep episode. Other sleep variables were not affected. rTMS of the left dorsolateral cortex did not alter the topography of EEG power spectra in waking following stimulation, in the all-night sleep EEG, or during the first non-REM sleep episode. Our results indicate that a single session of rTMS using parameters like those used in depression treatment protocols has no detectable side effects with respect to sleep in young healthy males.
Resumo:
Clinical, postmortem and preclinical research strongly implicates dysregulation of glutamatergic neurotransmission in major depressive disorder (MDD). Recently, metabotropic glutamate receptors (mGluRs) have been proposed as attractive targets for the discovery of novel therapeutic approaches against depression. The aim of this study was to examine mGluR2/3 protein levels in the prefrontal cortex (PFC) from depressed subjects. In addition, to test whether antidepressants influence mGluR2/3 expression we also studied levels of mGluR2/3 in fluoxetine-treated monkeys. Postmortem human prefrontal samples containing Brodmann's area 10 (BA10) were obtained from 11 depressed and 11 psychiatrically healthy controls. Male rhesus monkeys were treated chronically with fluoxetine (dose escalated to 3mg/kg, p.o.; n=7) or placebo (n=6) for 39 weeks. The mGluR2/3 immunoreactivity was investigated using Western blot method. There was a robust (+67%) increase in the expression of the mGlu2/3 protein in the PFC of depressed subjects relative to healthy controls. The expression of mGlu2/3 was unchanged in the PFC of monkeys treated with fluoxetine. Our findings provide the first evidence that mGluR2/3 is elevated in the PFC in MDD. This observation is consistent with reports showing that mGluR2/3 antagonists exhibit antidepressant-like activity in animal models and demonstrates that these receptors are promising targets for the discovery of novel antidepressants.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a means to study the function and connectivity of brain areas. The present study addressed the question of hemispheric asymmetry of frontal regions and aimed to further understand the acute effects of high- and low-frequency rTMS on regional cerebral blood flow (rCBF). Sixteen healthy right-handed men were imaged using H(2)(15)O positron emission tomography (PET) immediately after stimulation. High (10 Hz)- and low (1 Hz)-frequency suprathreshold short-duration rTMS was applied over either the left or right dorsolateral prefrontal cortex (DLPFC). Slow and fast rTMS applied over the left DLPFC significantly increased CBF in the stimulated area. Compared to baseline, slow rTMS induced a significant increase in CBF contralateral to the stimulation site, in the right caudate body and in the anterior cingulum. Furthermore, slow rTMS decreased CBF in the orbitofrontal cortex (OFC, ipsilateral to stimulation side). Fast rTMS applied over the right DLPFC was associated with increased activity at the stimulation site, in the bilateral orbitofrontal cortex and in the left medial thalamus compared to 1-Hz rTMS. These results show that rCBF changes induced by prefrontal rTMS differ upon hemisphere stimulated and vary with stimulation frequency. These differential neurophysiological effects of short-train rTMS with respect to side and frequency suggest hemisphere-dependent functional circuits of frontal cortico-subcortical areas.
Resumo:
The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.