16 resultados para domoic acid, biotoxins, detection
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A new approach for the determination of free and total valproic acid in small samples of 140 μL human plasma based on capillary electrophoresis with contactless conductivity detection is proposed. A dispersive liquid-liquid microextraction technique was employed in order to remove biological matrices prior to instrumental analysis. The free valproic acid was determined by isolating free valproic acid from protein-bound valproic acid by ultrafiltration under centrifugation of 100 μL sample. The filtrate was acidified to turn valproic acid into its protonated neutral form and then extracted. The determination of total valproic acid was carried out by acidifying 40 μL untreated plasma to release the protein-bound valproic acid prior to extraction. A solution consisting of 10 mM histidine, 10 mM 3-(N-morpholino)propanesulfonic acid and 10 μM hexadecyltrimethylammonium bromide of pH 6.5 was used as background electrolyte for the electrophoretic separation. The method showed good linearity in the range of 0.4-300 μg/mL with a correlation coefficient of 0.9996. The limit of detection was 0.08 μg/mL, and the reproducibility of the peak area was excellent (RSD=0.7-3.5%, n=3, for the concentration range from 1 to 150 μg/mL). The results for the free and total valproic acid concentration in human plasma were found to be comparable to those obtained with a standard immunoassay. The corresponding correlation coefficients were 0.9847 for free and 0.9521 for total valproic acid.
Resumo:
A convenient and rapid method for the simultaneous determination by HPLC of 3-hydroxyanthranilic acid and the dimer derived by its oxidation, cinnabarinic acid, is described. Buffers or biological samples containing these two Trp metabolites were acidified to pH 2.0 and extracted with ethyl acetate with recoveries of 96.5 +/- 0.5 and 93.4 +/- 3.7% for 3-hydroxyanthranilic and cinnabarinic acid, respectively. The two compounds were separated on a reversed-phase (C18) column combined with ion-pair chromatography and detected photometrically or electrochemically. The method was applied successfully to biological systems in which formation of either 3-hydroxyanthranilic or cinnabarinic acid had been described previously. Thus, interferon-gamma-treated human peripheral blood mononuclear cells formed and released significant amounts of 3-hydroxyanthranilic acid into the culture medium and mouse liver nuclear fraction possessed high "cinnabarinic acid synthase" activity. In contrast, addition of 3-hydroxyanthranilic acid to human erythrocytes resulted in only marginal formation of cinnabarinic acid. We conclude that the method described is specific, sensitive, and suitable for the detection of the two Trp metabolites in biological systems.
Resumo:
OBJECTIVE In contrast to conventional breast imaging techniques, one major diagnostic benefit of breast magnetic resonance imaging (MRI) is the simultaneous acquisition of morphologic and dynamic enhancement characteristics, which are based on angiogenesis and therefore provide insights into tumor pathophysiology. The aim of this investigation was to intraindividually compare 2 macrocyclic MRI contrast agents, with low risk for nephrogenic systemic fibrosis, in the morphologic and dynamic characterization of histologically verified mass breast lesions, analyzed by blinded human evaluation and a fully automatic computer-assisted diagnosis (CAD) technique. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. In this prospective, single-center study, 45 women with 51 histopathologically verified (41 malignant, 10 benign) mass lesions underwent 2 identical examinations at 1.5 T (mean time interval, 2.1 days) with 0.1-mmol kg doses of gadoteric acid and gadobutrol. All magnetic resonance images were visually evaluated by 2 experienced, blinded breast radiologists in consensus and by an automatic CAD system, whereas the morphologic and dynamic characterization as well as the final human classification of lesions were performed based on the categories of the Breast imaging reporting and data system MRI atlas. Lesions were also classified by defining their probability of malignancy (morpho-dynamic index; 0%-100%) by the CAD system. Imaging results were correlated with histopathology as gold standard. RESULTS The CAD system coded 49 of 51 lesions with gadoteric acid and gadobutrol (detection rate, 96.1%); initial signal increase was significantly higher for gadobutrol than for gadoteric acid for all and the malignant coded lesions (P < 0.05). Gadoteric acid resulted in more postinitial washout curves and fewer continuous increases of all and the malignant lesions compared with gadobutrol (CAD hot spot regions, P < 0.05). Morphologically, the margins of the malignancies were different between the 2 agents, whereas gadobutrol demonstrated more spiculated and fewer smooth margins (P < 0.05). Lesion classifications by the human observers and by the morpho-dynamic index compared with the histopathologic results did not significantly differ between gadoteric acid and gadobutrol. CONCLUSIONS Macrocyclic contrast media can be reliably used for breast dynamic contrast-enhanced MRI. However, gadoteric acid and gadobutrol differed in some dynamic and morphologic characterization of histologically verified breast lesions in an intraindividual, comparison. Besides the standardization of technical parameters and imaging evaluation of breast MRI, the standardization of the applied contrast medium seems to be important to receive best comparable MRI interpretation.
Resumo:
We have investigated the homo-DNA templated Staudinger reduction of the profluorophore rhodamine azide and have applied this reaction to the detection of natural DNA with a hybrid homo-DNA/DNA molecular beacon. In this system the sensing and the reporting unit are bioorthogonal to each other which facilitates sequence design and increases fidelity.
Resumo:
A capillary electrophoresis method with contactless conductivity detection was evaluated as a new approach for quantification of creatine and phosphocreatine in human quadriceps femoris biopsy samples. The running buffers employed consisted of 1 M acetic acid at a pH of 2.3 for the determination of creatine and 50 mM 3-(N-morpholino)propanesulfonic acid/30 mM histidine at a pH of 6.4 for the determination of phosphocreatine in the centrifuged muscle extracts. The limits of detection for creatine and phosphocreatine were found to be 2.5 and 1.0 μM, respectively. Creatine and phosphocreatine were determined in six human muscle biopsy samples and the results were found comparable to those of a standard enzymatic assay. The procedures developed for creatine and phosphocreatine also allow the determination of creatinine as well as adenosine diphosphate and adenosine triphosphate.
Resumo:
A new diagnostic system, called one-step nucleic acid amplification (OSNA), has recently been designed to detect cytokeratin 19 mRNA as a surrogate for lymph node metastases. The objective of this prospective investigation was to compare the performance of OSNA with both standard hematoxylin and eosin (H&E) analysis and intensive histopathology in the detection of colon cancer lymph node metastases.
Resumo:
Human rhinoviruses (HRV), and to a lesser extent human enteroviruses (HEV), are important respiratory pathogens. Like other RNA viruses, these picornaviruses have an intrinsic propensity to variability. This results in a large number of different serotypes as well as the incessant discovery of new genotypes. This large and growing diversity not only complicates the design of real-time PCR assays but also renders immunofluorescence unfeasible for broad HRV and HEV detection or quantification in cells. In this study, we used the 5' untranslated region, the most conserved part of the genome, as a target for the development of both a real-time PCR assay (Panenterhino/Ge/08) and a peptide nucleic acid-based hybridization oligoprobe (Panenterhino/Ge/08 PNA probe) designed to detect all HRV and HEV species members according to publicly available sequences. The reverse transcription-PCR assay has been validated, using not only plasmid and viral stocks but also quantified RNA transcripts and around 1,000 clinical specimens. These new generic detection PCR assays overcame the variability of circulating strains and lowered the risk of missing emerging and divergent HRV and HEV. An additional real-time PCR assay (Entero/Ge/08) was also designed specifically to provide sensitive and targeted detection of HEV in cerebrospinal fluid. In addition to the generic probe, we developed specific probes for the detection of HRV-A and HRV-B in cells. This investigation provides a comprehensive toolbox for accurate molecular identification of the different HEV and HRV circulating in humans.
Resumo:
Coulometric nanotitrations were realized in a microchannel system using a continuous-flow titration technique with a triangle current-time profile. Redox and acid-base titrations were carried out on Fe(II) and nitric acid samples, respectively, with the same nanotitrator device. A linear relation between the concentration and the coulometric current transferred to the solution was found. The advantages of this universally applicable nanotitrator are fast response, low sample volume, high sensitivity, and high reproducibility as well as the convenience of handling an automated analyzer of the flow-through type.
Resumo:
We have developed an assay for single strand DNA or RNA detection which is based on the homo-DNA templated Staudinger reduction of the profluorophore rhodamine-azide. The assay is based on a three component system, consisting of a homo-DNA/DNA hybrid probe, a set of homo-DNA reporter strands and the target DNA or RNA. We present two different formats of the assay (Omega probe and linear probe) in which the linear probe was found to perform best with catalytic turnover of the reporter strands (TON: 8) and a match/mismatch discrimination of up to 19. The advantage of this system is that the reporting (homo-DNA) and sensing (DNA) domain are decoupled from each other since the two pairing systems are bioorthogonal. This allows independent optimization of either domain which may lead to higher selectivity in in vivo imaging.
Resumo:
OBJECTIVES Application of the recently developed optical method based on the monitoring of the specular reflection intensity to study the protective potential of the salivary pellicle layer against early enamel erosion. METHODS The erosion progression was compared between two treatment groups: enamel samples coated by the 15 h-in vitro-formed salivary pellicle layer (group P, n=90) and the non-coated enamel surfaces (control group C, n=90). Different severity of the erosive impact was modelled by the enamel incubation in 1% citric acid (pH=3.6) for 2, 4, 8, 10 or 15 min. Erosion quantification was performed by the optical method as well as by the microhardness and calcium release analyses. RESULTS Optical assessment of the erosion progression showed erosion inhibition by the in vitro salivary pellicle in short term acidic treatments (≤ 4 min) which was also confirmed by microhardness measurements proving significantly less (p<0.05) enamel softening in the group P at 2 and 4 min of erosion compared to the group C. SEM images demonstrated less etched enamel interfaces in the group P at short erosion durations as well. CONCLUSIONS Monitoring of the specular reflection intensity can be successfully applied to quantify early erosion progression in comparative studies. In vitro salivary pellicle (2h) provides erosion inhibition but only in short term acidic exposures. CLINICAL SIGNIFICANCE The proposed optical technique is a promising tool for the fast and non-invasive erosion quantification in clinical studies.
Resumo:
During the last few years γ-hydroxybutyric acid (GHB) and γ-butyrolactone (GBL) have attracted much interest as recreational drugs and knock-out drops in drug-facilitated sexual assaults. This experiment aims at getting an insight into the pharmacokinetics of GHB after intake of GBL. Therefore Two volunteers took a single dose of 1.5 ml GBL, which had been spiked to a soft drink. Assuming that GBL was completely metabolized to GHB, the corresponding amount of GHB was 2.1 g. Blood and urine samples were collected 5 h and 24 h after ingestion, respectively. Additionally, hair samples (head hair and beard hair) were taken within four to five weeks after intake of GBL. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after protein precipitation with acetonitrile. The following observations were made: spiked to a soft drink, GBL, which tastes very bitter, formed a liquid layer at the bottom of the glass, only disappearing when stirring. Both volunteers reported weak central effects after approximately 15 min, which disappeared completely half an hour later. Maximum concentrations of GHB in serum were measured after 20 min (95 µg/ml and 106 µg/ml). Already after 4-5 h the GHB concentrations in serum decreased below 1 µg/ml. In urine maximum GHB concentrations (140 µg/ml and 120 µg/ml) were measured after 1-2 h, and decreased to less than 1 µg/ml within 8-10 h. The Ratio of GHB in serum versus blood was 1.2 and 1.6
Resumo:
BACKGROUND Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.
Resumo:
Delta-9-tetrahydrocannabinolic acid A (THCA-A) is the biosynthetic precursor of delta-9-tetrahydrocannabinol (THC) in cannabis plants, and has no psychotropic effects. THCA-A can be detected in blood and urine, and several metabolites have been identified. THCA-A was also shown to be incorporated in hair by side stream smoke to a minor extent, but incorporation via blood stream or sweat seems unlikely. The detection of THCA-A in biological fluids may serve as a marker for differentiating between the intake of prescribed THC medication – containing only pure THC – and cannabis products containing THC besides THC-acid A and other cannabinoids. However, the knowledge about its usefulness in forensic cases is very limited. The aim of the present work was the development of a reliable method for THCA-A determination in human blood or plasma using LC–MS/MS and application to cases of driving under the influence of drugs. Fifty eight (58) authentic whole blood and the respective plasma samples were collected from drivers suspected of driving under the influence of cannabis from the region of Bern (Switzerland). Samples were first tested for THC, 11-OH-THC and THC-COOH, and then additionally for THCA-A. For this purpose, the existing LC–MS/MS method was modified and validated, and found to be selective and linear over a range of 1.0 to 200 ng/mL (the correlation coefficients were above 0.9980 in all validation runs). Limit of detection (LOD) and limit of quantification (LOQ) were 0.3 ng/mL and 1.0 ng/mL respectively. Intra- and inter-assay accuracy were equal or better than 90% and intra- and inter-assay precision were equal or better than 11.1%. The mean extraction efficiencies were satisfactory being equal or higher than 85.4%. THCA-A was stable in whole blood samples after 3 freeze/thaw cycles and storage at 4 °C for 7 days. Re-injection (autosampler) stability was also satisfactory. THC was present in all blood samples with levels ranging from 0.7 to 51 ng/mL. THCA-A concentrations ranged from 1.0 to 496 ng/mL in blood samples and from 1.4 to 824 ng/mL in plasma samples. The plasma:blood partition coefficient had a mean value of 1.7 (±0.21, SD). No correlation was found between the degree of intoxication or impairment stated in the police protocols or reports of medical examinations and the detected THCA-A-concentration in blood.
Resumo:
We screened a total of 340 veterinarians (including general practitioners, small animal practitioners, large animal practitioners, veterinarians working in different veterinary services or industry), and 29 veterinary assistants for nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP) at the 2012 Swiss veterinary annual meeting. MRSA isolates (n = 14) were detected in 3.8 % (95 % CI 2.1 - 6.3 %) of the participants whereas MRSP was not detected. Large animal practitioners were carriers of livestock-associated MRSA (LA-MRSA) ST398-t011-V (n = 2), ST398-t011-IV (n = 4), and ST398-t034-V (n = 1). On the other hand, participants working with small animals harbored human healthcare-associated MRSA (HCA-MRSA) which belonged to epidemic lineages ST225-t003-II (n = 2), ST225-t014-II (n = 1), ST5-t002-II (n = 2), ST5-t283-IV (n = 1), and ST88-t186-IV (n = 1). HCA-MRSA harbored virulence factors such as enterotoxins, β-hemolysin converting phage and leukocidins. None of the MRSA isolates carried Panton-Valentine leukocidin (PVL). In addition to the methicillin resistance gene mecA, LA-MRSA ST398 isolates generally contained additional antibiotic resistance genes conferring resistance to tetracycline [tet(M) and tet(K)], trimethoprim [dfrK, dfrG], and the aminoglycosides gentamicin and kanamycin [aac(6')-Ie - aph(2')-Ia]. On the other hand, HCA-MRSA ST5 and ST225 mainly contained genes conferring resistance to the macrolide, lincosamide and streptogramin B antibiotics [erm(A)], to spectinomycin [ant(9)-Ia], amikacin and tobramycin [ant(4')-Ia], and to fluoroquinolones [amino acid substitutions in GrlA (S84L) and GyrA (S80F and S81P)]. MRSA carriage may represent an occupational risk and veterinarians should be aware of possible MRSA colonization and potential for developing infection or for transmitting these strains. Professional exposure to animals should be reported upon hospitalization and before medical intervention to allow for preventive measures. Infection prevention measures are also indicated in veterinary medicine to avoid MRSA transmission between humans and animals, and to limit the spread of MRSA both in the community, and to animal and human hospitals.
Resumo:
Human bone is the most direct source for reconstructing health and living conditions of ancient populations. However, many diseases remain undetected in palaeopathology. Möller-Barlow disease (scurvy) is a historically well-documented metabolic disease and must have been common in clinical and sub-clinical severity. Due to long incubation periods and the subtle nature of bone changes osteological evidence is relatively rare (Brickley & Ives 2008). Möller-Barlow disease is caused by deficiency of dietary vitamin C (ascorbic acid) and evokes symptoms like fatigue, haemorrhage, inflammations, delayed wound healing and pain. Vitamin C is a cofactor for the hydroxylation of the amino acids proline and lysine which are essential for the production of intact connective tissue by cross-linking the propeptides in collagen. In a preliminary study we tested the detectability of Möller-Barlow disease by analysis of relative quantitative variability of hydroxylated amino acids in collagen (Pendery & Koon 2013). Samples (N=9) were taken from children with (n=3, cranium, femur, tibia) and without (n=4, cranium, femur, tibia) apparent bone reactions indicative of Möller-Barlow disease, as well as from adults with lethal traumata (n=2; negative controls). The skeletal remains originated from two early medieval cemeteries from Switzerland. Gas chromatographic (GC) analysis revealed minor differences between the samples. So far children with no pathologic alterations had fairly same values as negative controls while children with bone reactions paradoxically exhibited even slightly higher values of hydroxyproline and hydroxylysine. Future research demands for larger sample size and has to discuss sampling strategies. Beside possible misdiagnosis of Möller-Barlow disease it is arguable if only the newly built bone should be analysed even though this could lead to problems related to small sample quantity. It also remains to be seen to which extent varying turnover rates of different skeletal elements, especially in children, must be taken into account.