51 resultados para diversified grazing ecosystems

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software evolution research has focused mostly on analyzing the evolution of single software systems. However, it is rarely the case that a project exists as standalone, independent of others. Rather, projects exist in parallel within larger contexts in companies, research groups or even the open-source communities. We call these contexts software ecosystems, and on this paper we present The Small Project Observatory, a prototype tool which aims to support the analysis of project ecosystems through interactive visualization and exploration. We present a case-study of exploring an ecosystem using our tool, we describe about the architecture of the tool, and we distill the lessons learned during the tool-building experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpine snowbeds are habitats where the major limiting factors for plant growth are herbivory and a small time window for growth due to late snowmelt. Despite these limitations, snowbed vegetation usually forms a dense carpet of palatable plants due to favourable abiotic conditions for plant growth within the short growing season. These environmental characteristics make snowbeds particularly interesting to study the interplay of facilitation and competition. We hypothesised an interplay between resource competition and facilitation against herbivory. Further, we investigated whether these predicted neighbour effects were species-specific and/or dependent on ontogeny, and whether the balance of positive and negative plant–plant interactions shifted along a snowmelt gradient. We determined the neighbour effects by means of neighbour removal experiments along the snowmelt gradient, and linear mixed model analyses. The results showed that the effects of neighbour removal were weak but generally consistent among species and snowmelt dates, and depended on whether biomass production or survival was considered. Higher total biomass and increased fruiting in removal plots indicated that plants competed for nutrients, water, and light, thereby supporting the hypothesis of prevailing competition for resources in snowbeds. However, the presence of neighbours reduced herbivory and thereby also facilitated survival. For plant growth the facilitative effects against herbivores in snowbeds counterbalanced competition for resources, leading to a weak negative net effect. Overall the neighbour effects were not species-specific and did not change with snowmelt date. Our finding of counterbalancing effects of competition and facilitation within a plant community is of special theoretical value for species distribution models and can explain the success of models that give primary importance to abiotic factors and tend to overlook interrelations between biotic and abiotic effects on plants.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degraded hillsides in Northern Pakistan are rehabilitated through social forestry campaigns using fast growing exotic trees. These plantations on former scrublands curtail access by livestock owned by landless pastoralists and create social tension. This study proposes an alternative strategy of planting indigenous fodder trees and shrubs that are well-suited to the local socio-ecological characteristics and can benefit all social segments. The choice of fodder tree species, their nutritional value and distribution within the complex socio-ecological system is explained. This study also explores the suitability of these trees at different elevations, sites and transhumant routes. Providing mobile herders with adequate fodder trees could relax social tensions and complement food security.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.