46 resultados para dissociation constant
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The mineral in our teeth is composed of a calcium-deficient carbonated hydroxyapatite (Ca10-xNax(PO4)6-y(CO3)z(OH)2-uFu). These substitutions in the mineral crystal lattice, especially carbonate, renders tooth mineral more acid soluble than hydroxyapatite. During erosion by acid and/or chelators, these agents interact with the surface of the mineral crystals, but only after they diffuse through the plaque, the pellicle, and the protein/lipid coating of the individual crystals themselves. The effect of direct attack by the hydrogen ion is to combine with the carbonate and/or phosphate releasing all of the ions from that region of the crystal surface leading to direct surface etching. Acids such as citric acid have a more complex interaction. In water they exist as a mixture of hydrogen ions, acid anions (e.g. citrate) and undissociated acid molecules, with the amounts of each determined by the acid dissociation constant (pKa) and the pH of the solution. Above the effect of the hydrogen ion, the citrate ion can complex with calcium also removing it from the crystal surface and/or from saliva. Values of the strength of acid (pKa) and for the anion-calcium interaction and the mechanisms of interaction with the tooth mineral on the surface and underneath are described in detail.
Resumo:
Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the importance of the apoA-I/ABCA1 pathway in MG cholesterol transport and suggest its role in influencing milk composition and directing cholesterol back into the bloodstream.
Resumo:
The purpose of this study was to characterize the nature of the relation between periodic leg movements during sleep (PLMS) and cortical arousals to contribute to the debate on the clinical significance and treatment of PLMS.
Resumo:
Toll-like receptors are of key importance in the recognition of and response to infectious agents by cells of the innate immune system. TLR mRNA expression and TLR-mediated functions were determined in bovine macrophages (MPhi) infected with bovine viral diarrhea virus (BVDV) or stimulated with interferon-gamma (IFN-gamma) in order to see whether they are correlated under these conditions. As parameters quantitative real time RT-PCR (QRT-PCR) for TLR2, TLR3 and TLR4, NO and TNF production were measured. Triggering of bovine MPhi with bona fide TLR2 and TLR4 agonists (lipopolysaccharide, lipoteichoic acid, peptidoglycan, lipopetide) led to NO and TNF production but neither TLR3 nor TLR9 agonists (double-stranded RNA, CpG DNA) showed this effect. The mRNA expression of TLR2, TLR3 and TLR4 was neither influenced by MPhi costimulation with IFN-gamma nor by MPhi preinfection with BVDV nor by the ligands themselves. However, NO production induced by TLR2 or TLR4 agonists was strongly modulated either by IFN-gamma costimulation or BVDV preinfection. Thus costimulation of MPhi with IFN-gamma resulted in an increase of both NO synthesis and TNF expression by cells stimulated simultaneously by TLR2 or TLR4 agonists. Preinfection of bovine MPhi by BVDV resulted in upregulation of TLR2- and TLR4-mediated NO synthesis. Collectively, these data show that TLR-mediated functions may be modulated by viral infection or activation via IFN-gamma of MPhi whereas the mRNA concentrations of relevant TLR members were not significantly influenced. Thus, the amount of TLR2, TLR3 and TLR4 mRNA transcripts is stable at least under the conditions tested. More importantly, modulation of TLR-mediated responses was dissociated from mRNA expression of TLR members.
Resumo:
The soluble and stable fibrin monomer-fibrinogen complex (SF) is well known to be present in the circulating blood of healthy individuals and of patients with thrombotic diseases. However, its physiological role is not yet fully understood. To deepen our knowledge about this complex, a method for the quantitative analysis of interaction between soluble fibrin monomers and surface-immobilized fibrinogen has been established by means of resonant mirror (IAsys) and surface plasmon resonance (BIAcore) biosensors. The protocols have been optimized and validated by choosing appropriate immobilization procedures with regeneration steps and suitable fibrin concentrations. The highly specific binding of fibrin monomers to immobilized fibrin(ogen), or vice versa, was characterized by an affinity constant of approximately 10(-8)M, which accords better with the direct dissociation of fibrin triads (KD approximately 10(-8) -10(-9) M) (J. R. Shainoff and B. N. Dardik, Annals of the New York Academy of Science, 1983, Vol. 27, pp. 254-268) than with earlier estimations of the KD for the fibrin-fibrinogen complex (KD approximately 10(-6) M) (J. L. Usero, C. Izquierdo, F. J. Burguillo, M. G. Roig, A. del Arco, and M. A. Herraez, International Journal of Biochemistry, 1981, Vol. 13, pp. 1191-1196).
Resumo:
The precise role of the fusiform face area (FFA) in face processing remains controversial. In this study, we investigated to what degree FFA activation reflects additional functions beyond face perception. Seven volunteers underwent rapid event-related functional magnetic resonance imaging while they performed a face-encoding and a face-recognition task. During face encoding, activity in the FFA for individual faces predicted whether the individual face was subsequently remembered or forgotten. However, during face recognition, no difference in FFA activity between consciously remembered and forgotten faces was observed, but the activity of FFA differentiated if a face had been seen previously or not. This demonstrated a dissociation between overt recognition and unconscious discrimination of stimuli, suggesting that physiological processes of face recognition can take place, even if not all of its operations are made available to consciousness.
Resumo:
SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.
Resumo:
Previous studies on the effect of glycosylation on the elimination rate of antibodies have produced conflicting results. Here, we performed pharmacokinetic studies in mice with two preparations of a monoclonal IgG1 antibody enriched for complex type or high mannose type oligosaccharides at the Fc glycosylation site. No significant difference in the serum half-life was found between the two antibody glycoforms, nor was any difference observed in the serum half-lives of different complex type glycoforms. To evaluate the influence of glycosylation within the variable domain, a second monoclonal antibody, glycosylated in both the Fc and Fv domains, was separated into fractions containing different amounts of Fv-associated sialic acid and administered to mice. Again, no significant difference was found in the clearance rates of variants carrying different amounts of Fv-associated sialic acid or lacking Fv-glycosylation. These results suggest that glycosylation has little or no impact on the pharmacokinetic behavior of these two monoclonal antibodies in mice.
Resumo:
This study investigates the results of a technique using an extensor carpi radialis longus (ECRL) tenodesis for symptomatic scapholunate instability. Symptomatic scapholunate instability has been corrected so far either by limited wrist fusion or by various techniques of soft tissue repair. Limited wrist fusion greatly reduces wrist motion and increases the probability of osteoarthritis in the remaining mobile wrist segments. On the other hand, most types of soft tissue repair are technically difficult to perform and have disappointing results due to the inherent laxity. The presented dynamic approach was used in 20 wrists of 19 patients with static scapholunate instability. Preoperative evaluation included in all patients clinical examination, radiologic evaluation, and arthroscopy for establishing the diagnosis of static scapholunate instability. The technique involves the fixation of the ECRL tendon on the dorsal aspect of the scaphoid by means of a cancellous screw and a special washer. Dynamic ECRL tenodesis of the scaphoid is a safe and simple procedure that enhances the extension forces on the scaphoid in all wrist positions. The results of this preliminary report in 20 wrists showed dynamic ECRL tenodesis to be an effective treatment option for treating symptomatic static scapholunate instability.
Resumo:
OBJECTIVE: To evaluate pharmacokinetics of ketamine and norketamine enantiomers after constant rate infusion (CRI) of a subanesthetic dose of racemic ketamine or S-ketamine in ponies. ANIMALS: Five 6-year-old Shetland pony geldings that weighed between 101 and 152 kg. PROCEDURES: In a crossover study, each pony received a CRI of racemic ketamine (loading dose, 0.6 mg/kg; CRI, 0.02 mg/kg/min) and S-ketamine (loading dose, 0.3 mg/kg; CRI, 0.01 mg/kg/min), with a 1-month interval between treatments. Arterial blood samples were collected before and at 5, 15, 30, 45, and 60 minutes during drug administration and at 5, 10, 30, and 60 minutes after discontinuing the CRI. Plasma ketamine and norketamine enantiomers were quantified by use of capillary electrophoresis. Individual R-ketamine and S-ketamine concentration-versus-time curves were analyzed by use of a monocompartmental model. Plasma disposition curves for R-norketamine and S-norketamine were described by estimating the area under the concentration-versus-time curve (AUC), maximum concentration (Cmax), and time until Cmax. RESULTS: Plasma concentrations of S-ketamine decreased and biodegradation products increased more rapidly after S-ketamine CRI, compared with results after racemic ketamine CRI. The R-norketamine was eliminated faster than was the S-norketamine. Significant differences between treatments were found for the AUC of S-ketamine and within the racemic ketamine CRI for the AUC and Cmax of norketamine isomers. CONCLUSIONS AND CLINICAL RELEVANCE: CRI of S-ketamine may be preferable over CRI of racemic ketamine in standing equids because the S-enantiomer was eliminated faster when infused alone instead of as part of a racemic mixture.