6 resultados para direct-drive motor

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We appreciate the comments and concerns expressed by Arakawa and colleagues regarding our article, titled “Pulsatile control of rotary blood pumps: Does the modulation waveform matter?”1 Unfortunately, we have to disagree with Arakawa and colleagues. As is obvious from the title of our article, it investigates the effect of different waveforms on the heart–device interaction. In contrast to the authors' claim, this is the first article in the literature that uses basic waveforms (sine, triangle, saw tooth, and rectangular) with different phase shifts to examines their impact on left ventricular unloading. The previous publications2, 3 and 4 just varied the pump speed during systole and diastole, which was first reported by Bearnson and associates5 in 1996, and studied its effect on aortic pressure, coronary flow, and end-diastolic volume. We should mention that dp/dtmax is a load-sensitive parameter of contractility and not representative for the degree of unloading. Moreover, none of the aforementioned reports has studied mechanical unloading and in particular the stroke work of the left ventricle. Our method is unique because we do not just alternate between high and low speed but have accurate control of the waveform because of the direct drive system of Levitronix Technologies LLC (Waltham, Mass) and a custom-developed pump controller. Without referring, Arakawa and associates state “several previous studies have already reported the coronary flow diminishes as the left ventricular assist device support increases.” It should be noted that all the waveforms used in our study have 2000 rpm average value with 1000 rpm amplitude, which is not an excessive speed for the CentriMag rotary pump (Levitronix) to collapse the ventricle and diminish the coronary flow. We agree with Arakawa and coworkers that there is a need for a heart failure model to come to more relevant results with respect to clinical expectations. However, we have explored many existing models, including species and breeds that have a native proneness to cardiomyopathy, but all of them differ from the genetic presentation in humans. We certainly do not believe that the use of microembolization, in which the coronary circulation is impaired by the injection of microspheres, would form a good model from which to draw conclusions about coronary flow change under different loading conditions. A model would be needed in which either an infarct is created to mimic ischemic heart failure or the coronary circulation remains untouched to simulate, for instance, dilated cardiomyopathy. Furthermore, in discussion we clearly mention that “lack of heart failure is a major limitation of our study.” We also believe that unloading is not the only factor of the cardiac functional recovery, and an excessive unloading of the left ventricle might lead to cardiac tissue atrophy. Therefore, in our article we mention that control of the level of cardiac unloading by assist devices has been suggested as a mechanical tool to promote recovery, and more studies are required to find better strategies for the speed modulation of rotary pumps and to achieve an optimal heart load control to enhance myocardial recovery. Finally, there are many publications about pulsing rotary blood pumps and it was impossible to include them all. We preferred to reference some of the earlier basic works such as an original research by Bearnson and coworkers5 and another article published by our group,6 which is more relevant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this review is to investigate how transcranial direct current stimulation(tDCS)can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to analyze central motor output changes in relation to contraction force during motor fatigue. The triple stimulation technique (TST, Magistris et al. in Brain 121(Pt 3):437-450, 1998) was used to quantify a central conduction index (CCI = amplitude ratio of central conduction response and peripheral nerve response, obtained simultaneously by the TST). The CCI removes effects of peripheral fatigue from the quantification. It allows a quantification of the percentage of the entire target muscle motor unit pool driven to discharge by a transcranial magnetic stimulus. Subjects (n = 23) performed repetitive maximal voluntary contractions (MVC) of abductor digiti minimi (duration 1 s, frequency 0.5 Hz) during 2 min. TST recordings were obtained every 15 s, using stimulation intensities sufficient to stimulate all cortical motor neurons (MNs) leading to the target muscle, and during voluntary contractions of 20% of the MVC to facilitate the responses. TST was also repetitively recorded during recovery. This basic exercise protocol was modified in a number of experiments to further characterize influences on CCI of motor fatigue (4 min exercise at 50% MVC; delayed fatigue recovery during local hemostasis, "stimulated exercise" by 20 Hz trains of 1 s duration at 0.5 Hz during 2 min). In addition, the cortical silent period was measured during the basic exercise protocol. Force fatigued to approximately 40% of MVC in all experiments and in all subjects. In all subjects, CCI decreased during exercise, but this decrease varied markedly between subjects. On average, CCI reductions preceded force reductions during exercise, and CCI recovery preceded force recovery. Exercising at 50% for 4 min reduced muscle force more markedly than CCI. Hemostasis induced by a cuff delayed muscle force recovery, but not CCI recovery. Stimulated exercise reduced force markedly, but CCI decreased only marginally. Summarized, force reduction and reduction of the CCI related poorly quantitatively and in time, and voluntary drive was particularly critical to reduce the CCI. The fatigue induced reduction of CCI may result from a central inhibitory phenomenon. Voluntary muscle activation is critical for the CCI reduction, suggesting a primarily supraspinal mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A man wearing no protective helmet was struck by a motor vehicle while riding a bicycle. He was loaded on his left side, and the impact point of his head was his occiput on the car roof girder. He was immediately transported to the general hospital, where he passed away. Postmortem examination using multi-slice computed tomography (MSCT) revealed an extensively comminuted fracture of the posterior part and the base of the skull. Observed were deep direct and contrecoup brain bruises, with the independent fractures of the roof of the both orbits. Massive subdural and subarachnoidal hemorrhage with cerebral edema and shifting of the mid-line towards left side were also detected. MSCT and autopsy results were compared and the body injuries were correlated to vehicle damages. In conclusion, postmortem imaging is a good forensic visualization tool with great potential for documentation and examination of body injuries and pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na+/K+ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na+/K+ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na+/K+ATPase-α3 onto a 10 amino acid stretch that is unique to Na+/K+ATPase-α3 but not found in the closely related Na+/K+ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na+/K+ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na+/K+ATPase-α3 restored Na+/K+ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na+/K+ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.