5 resultados para diffusion pattern

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: Proximal diffusion of local anaesthetic solution after perineural anaesthesia may lead to the desensitisation of structures other than those intended. However, there is no evidence-based study demonstrating the potential distribution and diffusion of local anaesthetic solution after perineural analgesia in the distal limb. OBJECTIVE: To document the potential diffusion of local anaesthetic solution using a radiopaque contrast model and to evaluate the influence of walking compared with confinement in a stable after injection. METHODS: Radiopaque contrast medium was injected subcutaneously over one palmar nerve at the base of the proximal sesamoid bones in 6 nonlame mature horses. Horses were assigned randomly to stand still or walk after injection. Radiographs were obtained 0, 5, 10, 15, 20 and 30 min after injection and were analysed to determine the distribution and diffusion of the contrast medium. RESULTS: In 89% of injections an elongated pattern of the contrast medium was observed suggesting distribution along the neurovascular bundle. After 49% of injections a fine radiopaque line extended proximally from the contrast 'patch', and in 25% of injections a line extended distally. There was significant proximal and distal diffusion with time when sequential radiographs of each limb were compared. The greatest diffusion occurred in the first 10 min. Walking did not significantly influence the extent of either proximal or distal diffusion. CONCLUSIONS AND POTENTIAL RELEVANCE: Significant proximal diffusion occurs in the first 10 min after perineural injection in the distal aspect of the limb and should be considered when interpreting nerve blocks. Distribution of local anaesthetic solution outside the fascia surrounding the neurovascular bundle or in lymphatic vessels may explain delayed or decreased effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: There is limited information on potential diffusion of local anaesthetic solution after various diagnostic analgesic techniques of the proximal metacarpal region. OBJECTIVE: To document potential distribution of local anaesthetic solution following 4 techniques used for diagnostic analgesia of the proximal metacarpal region. METHODS: Radiodense contrast medium was injected around the lateral palmar or medial and lateral palmar metacarpal nerves in 8 mature horses, using 4 different techniques. Radiographs were obtained 0, 10 and 20 min after injection and were analysed subjectively. A mixture of radiodense contrast medium and methylene blue was injected into 4 cadaver limbs; the location of the contrast medium and dye was determined by radiography and dissection. RESULTS: Following perineural injection of the palmar metacarpal nerves, most of the contrast medium was distributed in an elongated pattern axial to the second and fourth metacarpal bones. The carpometacarpal joint was inadvertently penetrated in 4/8 limbs after injections of the palmar metacarpal nerves from medial and lateral approaches, and in 1/8 limbs when both injections were performed from the lateral approach. Following perineural injection of the lateral palmar nerve using a lateral approach, the contrast medium was diffusely distributed in all but one limb, in which the carpal sheath was inadvertently penetrated. In 5/8 limbs, following perineural injection of the lateral palmar nerve using a medial approach, the contrast medium diffused proximally to the distal third of the antebrachium. CONCLUSIONS AND POTENTIAL RELEVANCE: Inadvertent penetration of the carpometacarpal joint is common after perineural injection of the palmar metacarpal nerves, but less so if both palmar metacarpal nerves are injected using a lateral approach. Following injection of the lateral palmar nerve using a medial approach, the entire palmar aspect of the carpus may be desensitised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to evaluate whether the distribution pattern of early ischemic changes in the initial MRI allows a practical method for estimating leptomeningeal collateralization in acute ischemic stroke (AIS). METHODS Seventy-four patients with AIS underwent MRI followed by conventional angiogram and mechanical thrombectomy. Diffusion restriction in Diffusion weighted imaging (DWI) and correlated T2-hyperintensity of the infarct were retrospectively analyzed and subdivided in accordance with Alberta Stroke Program Early CT score (ASPECTS). Patients were angiographically graded in collateralization groups according to the method of Higashida, and dichotomized in 2 groups: 29 subjects with collateralization grade 3 or 4 (well-collateralized group) and 45 subjects with grade 1 or 2 (poorly-collateralized group). Individual ASPECTS areas were compared among the groups. RESULTS Means for overall DWI-ASPECTS were 6.34 vs. 4.51 (well vs. poorly collateralized groups respectively), and for T2-ASPECTS 9.34 vs 8.96. A significant difference between groups was found for DWI-ASPECTS (p<0.001), but not for T2-ASPECTS (p = 0.088). Regarding the individual areas, only insula, M1-M4 and M6 showed significantly fewer infarctions in the well-collateralized group (p-values <0.001 to 0.015). 89% of patients in the well-collateralized group showed 0-2 infarctions in these six areas (44.8% with 0 infarctions), while 59.9% patients of the poor-collateralized group showed 3-6 infarctions. CONCLUSION Patients with poor leptomeningeal collateralization show more infarcts on the initial MRI, particularly in the ASPECTS areas M1 to M4, M6 and insula. Therefore DWI abnormalities in these areas may be a surrogate marker for poor leptomeningeal collaterals and may be useful for estimation of the collateral status in routine clinical evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partial differential equation (PDE) solvers are commonly employed to study and characterize the parameter space for reaction-diffusion (RD) systems while investigating biological pattern formation. Increasingly, biologists wish to perform such studies with arbitrary surfaces representing ‘real’ 3D geometries for better insights. In this paper, we present a highly optimized CUDA-based solver for RD equations on triangulated meshes in 3D. We demonstrate our solver using a chemotactic model that can be used to study snakeskin pigmentation, for example. We employ a finite element based approach to perform explicit Euler time integrations. We compare our approach to a naive GPU implementation and provide an in-depth performance analysis, demonstrating the significant speedup afforded by our optimizations. The optimization strategies that we exploit could be generalized to other mesh based processing applications with PDE simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present a computational framework for isolating spatial patterns arising in the steady states of reaction-diffusion systems. Such systems have been used to model many different phenomena in areas such as developmental and cancer biology, cell motility and material science. Often one is interested in identifying parameters which will lead to a particular pattern. To attempt to answer this, we compute eigenpairs of the Laplacian on a variety of domains and use linear stability analysis to determine parameter values for the system that will lead to spatially inhomogeneous steady states whose patterns correspond to particular eigenfunctions. This method has previously been used on domains and surfaces where the eigenvalues and eigenfunctions are found analytically in closed form. Our contribution to this methodology is that we numerically compute eigenpairs on arbitrary domains and surfaces. Here we present various examples and demonstrate that mode isolation is straightforward especially for low eigenvalues. Additionally we see that if two or more eigenvalues are in a permissible range then the inhomogeneous steady state can be a linear combination of the respective eigenfunctions. Finally we show an example which suggests that pattern formation is robust on similar surfaces in cases that the surface either has or does not have a boundary.