6 resultados para delta32ccr5 Frequency allele
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Chronic alcohol consumption is associated with an increased risk for upper aerodigestive tract cancer and hepatocellular carcinoma. Increased acetaldehyde production via alcohol dehydrogenase (ADH) has been implicated in the pathogenesis. The allele ADH1C*1 of ADH1C encodes for an enzyme with a high capacity to generate acetaldehyde. So far, the association between the ADH1C*1 allele and alcohol-related cancers among heavy drinkers is controversial. ADH1C genotypes were determined by polymerase chain reaction and restriction fragment length polymorphism in a total of 818 patients with alcohol-associated esophageal (n=123), head and neck (n=84) and hepatocellular cancer (n=86) as well as in patients with alcoholic pancreatitis (n=117), alcoholic liver cirrhosis (n=217), combined liver cirrhosis and pancreatitis (n=17) and in alcoholics without gastrointestinal organ damage (n=174). The ADH1C*1 allele and genotype ADH1C*1/1 were significantly more frequent in patients with alcohol-related cancers than that in individuals with nonmalignant alcohol-related organ damage. Using multivariate analysis, ADH1C*1 allele frequency and rate of homozygosity were significantly associated with an increased risk for alcohol-related cancers (p<0.001 in all instances). The odds ratio for genotype ADH1C*1/1 regarding the development of esophageal, hepatocellular and head and neck cancer were 2.93 (CI, 1.84-4.67), 3.56 (CI, 1.33-9.53) and 2.2 (CI, 1.11-4.36), respectively. The data identify genotype ADH1C*1/1 as an independent risk factor for the development of alcohol-associated tumors among heavy drinkers, indicating a genetic predisposition of individuals carrying this genotype.
Resumo:
Bovine congenital pseudomyotonia (PMT) is a genetic disease in Chianina and other breeds of cattle that induces muscular stiffness. PMT in the Chianina breed is caused by a missense mutation in exon 6 of the ATP2A1 gene, which encodes the SERCA1 pump. In this study, the prevalence of PMT carriers and the frequency of the deleterious PMT allele in selected subpopulations of the Chianina breed were estimated. The prevalence of PMT carriers among ranked Chianina sires used for artificial insemination in the years 2007-2011 was 13.6%. The frequency of PMT carriers in young bull calves born in the period January 2007 to June 2011 selected for a performance testing programme was 13.4%. Selective breeding against this genetic defect is restricted to males only and therefore is predicted to require at least seven generations to eradicate PMT.
Resumo:
Associations between the central serotonergic and γ-aminobutyric acid (GABA) systems play key roles in the prefrontal cortical regulation of emotion and cognition and in the pathophysiology and pharmacotherapy of highly prevalent psychiatric disorders. The goal of this study was to test the effects of common variants of the tryptophan hydroxylase isoform 2 (TPH2) gene on GABA concentration in the prefrontal cortex (PFC) using magnetic resonance spectroscopy. In this study involving 64 individuals, we examined the associations between prefrontal cortical GABA concentration and 12 single nucleotide polymorphisms (SNPs) spanning the TPH2 gene, including rs4570625 (−703 G/T SNP), a potentially functional TPH2 polymorphism that has been associated with decreased TPH2 mRNA expression and panic disorder. Our results revealed a significant association between increased GABA concentration in the PFC and the T-allele frequencies of two TPH2 SNPs, namely rs4570625 (−703 G/T) and rs2129575 (p≤0.0004) and the C-allele frequency of one TPH2 SNP, namely rs1386491 (p = 0.0003) in female subjects. We concluded that rs4570625 (−703 G/T), rs2129575 and rs1386491 play a significant role in GABAergic neurotransmission and may contribute to the sex-specific dysfunction of the GABAergic system in the PFC.
Resumo:
A population-genetic analysis is performed of a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under frequency-dependent disruptive selection caused by intraspecific competition for a continuum of resources. The modifier locus determines the degree of dominance at the trait level. We establish the conditions when a modifier allele can invade and when it becomes fixed if sufficiently frequent. In general, these are not equivalent because an unstable internal equilibrium may exist and the condition for successful invasion of the modifier is more restrictive than that for eventual fixation from already high frequency. However, successful invasion implies global fixation, i.e., fixation from any initial condition. Modifiers of large effect can become fixed, and also invade, in a wider parameter range than modifiers of small effect. We also study modifiers with a direct, frequency-independent deleterious fitness effect. We show that they can invade if they induce a sufficiently high level of dominance and if disruptive selection on the ecological trait is strong enough. For deleterious modifiers, successful invasion no longer implies global fixation because they can become stuck at an intermediate frequency due to a stable internal equilibrium. Although the conditions for invasion and for fixation if sufficiently frequent are independent of the linkage relation between the two loci, the rate of spread depends strongly on it. The present study provides further support to the view that evolution of dominance may be an efficient mechanism to remove unfit heterozygotes that are maintained by balancing selection. It also demonstrates that an invasion analysis of mutants of very small effect is insufficient to obtain a full understanding of the evolutionary dynamics under frequency-dependent selection.
Resumo:
We study the evolution of higher levels of dominance as a response to negative frequency-dependent selection. In contrast to previous studies, we focus on the effect of assortative mating on the evolution of dominance under frequency-dependent intraspecific competition. We analyze a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under a mixture of frequency-independent stabilizing selection, density-dependent selection, and frequency-dependent selection caused by intraspecific competition for a continuum of resources. The second (modifier) locus determines the degree of dominance at the trait level. Additionally, the population mates assortatively with respect to similarities in the ecological trait. Our analysis shows that the parameter region in which dominance can be established decreases if small levels of assortment are introduced. In addition, the degree of dominance that can be established also decreases. In contrast, if assortment is intermediate, sexual selection for extreme types can be established, which leads to evolution of higher levels of dominance than under random mating. For modifiers with large effects, intermediate levels of assortative mating are most favorable for the evolution of dominance. For large modifiers, the speed of fixation can even be higher for intermediate levels of assortative mating than for random mating.