23 resultados para decomposition of polymeric precursor method (DPP)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid precursor protein (APP) and amyloid-beta (Abeta) appear to participate in the pathophysiology of retinal ganglion cell (RGC) death in glaucoma. We, therefore, determined the distribution of APP and Abeta in the retinas of C57BL/6 mice after induction of chronic ocular hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE:Conventional platinum coils cause imaging artifacts that reduce imaging quality and therefore impair imaging interpretation on intraprocedural or noninvasive follow-up imaging. The purpose of this study was to evaluate imaging characteristics and artifact production of polymeric coils compared with standard platinum coils in vitro and in vivo.MATERIALS AND METHODS:Polymeric coils and standard platinum coils were evaluated in vitro with the use of 2 identical silicon aneurysm models coiled with a packing attenuation of 20% each. DSA, flat panel CT, CT, and MR imaging were performed. In vivo evaluation of imaging characteristics of polymeric coils was performed in experimentally created rabbit carotid bifurcation aneurysms. DSA, CT/CTA, and MR imaging were performed after endovascular treatment of the aneurysms. Images were evaluated regarding visibility of individual coils, coil mass, artifact production, and visibility of residual flow within the aneurysm.RESULTS:Overall, in vitro and in vivo imaging showed relevantly reduced artifact production of polymeric coils in all imaging modalities compared with standard platinum coils. Image quality of CT and MR imaging was improved with the use of polymeric coils, which permitted enhanced depiction of individual coil loops and residual aneurysm lumen as well as the peri-aneurysmal area. Remarkably, CT images demonstrated considerably improved image quality with only minor artifacts compared with standard coils. On DSA, polymeric coils showed transparency and allowed visualization of superimposed vessel structures.CONCLUSIONS:This initial experimental study showed improved imaging quality with the use of polymeric coils compared with standard platinum coils in all imaging modalities. This might be advantageous for improved intraprocedural imaging for the detection of complications and posttreatment noninvasive follow-up imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Measuring peritoneal lactate concentrations could be useful for detecting splanchnic hypoperfusion. The aims of this study were to evaluate the properties of a new membrane-based microdialyzer in vitro and to assess the ability of the dialyzer to detect a clinically relevant decrease in splanchnic blood flow in vivo. DESIGN: A membrane-based microdialyzer was first validated in vitro. The same device was tested afterward in a randomized, controlled animal experiment. SETTING: University experimental research laboratory. SUBJECTS: Twenty-four Landrace pigs of both genders. INTERVENTIONS: In vitro: Membrane microdialyzers were kept in warmed sodium lactate baths with lactate concentrations between 2 and 8 mmol/L for 10-120 mins, and microdialysis lactate concentrations were measured repeatedly (210 measurements). In vivo: An extracorporeal shunt with blood reservoir and roller pump was inserted between the proximal and distal abdominal aorta, and a microdialyzer was inserted intraperitoneally. In 12 animals, total splanchnic blood flow (measured by transit time ultrasound) was reduced by a median 43% (range, 13% to 72%) by activating the shunt; 12 animals served as controls. MEASUREMENTS AND MAIN RESULTS: In vitro: The fractional lactate recovery was 0.59 (0.32-0.83) after 60 mins and 0.82 (0.71-0.87) after 90 mins, with no further increase thereafter. At 60 and 90 mins, the fractional recovery was independent of the lactate concentration. In vivo: Abdominal blood flow reduction resulted in an increase in peritoneal microdialysis lactate concentration from 1.7 (0.3-3.8) mmol/L to 2.8 (1.3-6.2) mmol/L (p = .006). At the same time, mesenteric venous-arterial lactate gradient increased from 0.1 (-0.2-0.8) mmol/L to 0.3 (-0.3 -1.8) mmol/L (p = .032), and mesenteric venous-arterial Pco2 gradients increased from 12 (8-19) torr to 21 (11-54) torr (p = .005). CONCLUSIONS: Peritoneal membrane microdialysis provides a method for the assessment of splanchnic ischemia, with potential for clinical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Evidence suggests that altered metabolism of amyloid precursor protein (APP) may play a role in the pathophysiology of retinal ganglion cell (RGC) death in the etiology of glaucoma. The authors sought to determine the distribution of APP and amyloid-beta (Abeta) in DBA/2J glaucomatous mouse retinas. METHODS: The retinas of 3- and 15-month-old DBA/2J mice and C57/BL-6 mice (control group) were fixed with 4% paraformaldehyde and processed for immunohistochemistry. Antibodies used included a polyclonal antibody to the C terminus of Abeta 40 and a polyclonal antibody to the APP ectodomain. Immunohistochemically stained tissue was graded using light microscopy. Distribution and semiquantitative expression of APP and Abeta in young and old glaucomatous and normal retinas were determined and compared. RESULTS: Strong APP and Abeta immunoreactivity was found in the RGC layer, optic nerve, and pia/dura of old DBA/2J retinas, with considerably higher intensity found in the old compared with the young DBA/2J mice. In contrast to glaucomatous mice, the control group did not show any notable age-related difference. CONCLUSIONS: Disruption of the homeostatic properties of secreted APP with consecutive Abeta cytotoxicity might be a contributing factor of ganglion cell loss in glaucomatous mouse retinas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.