52 resultados para data validation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Postmortem computed tomography (pmCT) is increasingly applied in forensic medicine as a documentation and diagnostic tool. The present study investigated if pmCT data can be used to estimate the corpse weight. In 50 forensic cases, pmCT examinations were performed prior to autopsy and the pmCT data were used to determine the body volume using an automated segmentation tool. PmCT was performed within 48 h postmortem. The body weights assessed prior to autopsy and the body volumes assessed using the pmCT data were used to calculate individual multiplication factors. The mean postmortem multiplication factor for the study cases was 1.07 g/ml. Using this factor, the body weight may be estimated retrospectively when necessary. Severe artifact causing foreign bodies within the corpses limit the use of pmCT data for body weight estimations.
Resumo:
In questionable cystic fibrosis (CF), mild or monosymptomatic phenotypes frequently cause diagnostic difficulties despite detailed algorithms. CF transmembrane conductance regulator (CFTR)-mediated ion transport can be studied ex vivo in rectal biopsies by intestinal current measurement (ICM).
Resumo:
Attention-deficit/hyperactivity disorder (ADHD) often persists into adulthood. Instruments for diagnosing ADHD in childhood are well validated and reliable, but diagnosis of ADHD in adults remains problematic. Attempts have been made to develop criteria specific for adult ADHD, resulting in the development of self-report and observer-rated questionnaires. To date, the Conners Adult ADHD Rating Scales (CAARS) are the international standard for questionnaire assessment of ADHD. The current study evaluates a German version of the CAARS self-report (CAARS-S).
Resumo:
Background: Accelerometry has been established as an objective method that can be used to assess physical activity behavior in large groups. The purpose of the current study was to provide a validated equation to translate accelerometer counts of the triaxial GT3X into energy expenditure in young children. Methods: Thirty-two children aged 5–9 years performed locomotor and play activities that are typical for their age group. Children wore a GT3X accelerometer and their energy expenditure was measured with indirect calorimetry. Twenty-one children were randomly selected to serve as development group. A cubic 2-regression model involving separate equations for locomotor and play activities was developed on the basis of model fit. It was then validated using data of the remaining children and compared with a linear 2-regression model and a linear 1-regression model. Results: All 3 regression models produced strong correlations between predicted and measured MET values. Agreement was acceptable for the cubic model and good for both linear regression approaches. Conclusions: The current linear 1-regression model provides valid estimates of energy expenditure for ActiGraph GT3X data for 5- to 9-year-old children and shows equal or better predictive validity than a cubic or a linear 2-regression model.
Resumo:
BACKGROUND Recently, two simple clinical scores were published to predict survival in trauma patients. Both scores may successfully guide major trauma triage, but neither has been independently validated in a hospital setting. METHODS This is a cohort study with 30-day mortality as the primary outcome to validate two new trauma scores-Mechanism, Glasgow Coma Scale (GCS), Age, and Pressure (MGAP) score and GCS, Age and Pressure (GAP) score-using data from the UK Trauma Audit and Research Network. First, an assessment of discrimination, using the area under the receiver operating characteristic (ROC) curve, and calibration, comparing mortality rates with those originally published, were performed. Second, we calculated sensitivity, specificity, predictive values, and likelihood ratios for prognostic score performance. Third, we propose new cutoffs for the risk categories. RESULTS A total of 79,807 adult (≥16 years) major trauma patients (2000-2010) were included; 5,474 (6.9%) died. Mean (SD) age was 51.5 (22.4) years, median GCS score was 15 (interquartile range, 15-15), and median Injury Severity Score (ISS) was 9 (interquartile range, 9-16). More than 50% of the patients had a low-risk GAP or MGAP score (1% mortality). With regard to discrimination, areas under the ROC curve were 87.2% for GAP score (95% confidence interval, 86.7-87.7) and 86.8% for MGAP score (95% confidence interval, 86.2-87.3). With regard to calibration, 2,390 (3.3%), 1,900 (28.5%), and 1,184 (72.2%) patients died in the low, medium, and high GAP risk categories, respectively. In the low- and medium-risk groups, these were almost double the previously published rates. For MGAP, 1,861 (2.8%), 1,455 (15.2%), and 2,158 (58.6%) patients died in the low-, medium-, and high-risk categories, consonant with results originally published. Reclassifying score point cutoffs improved likelihood ratios, sensitivity and specificity, as well as areas under the ROC curve. CONCLUSION We found both scores to be valid triage tools to stratify emergency department patients, according to their risk of death. MGAP calibrated better, but GAP slightly improved discrimination. The newly proposed cutoffs better differentiate risk classification and may therefore facilitate hospital resource allocation. LEVEL OF EVIDENCE Prognostic study, level II.
Resumo:
Little is known about the aetiology of childhood brain tumours. We investigated anthropometric factors (birth weight, length, maternal age), birth characteristics (e.g. vacuum extraction, preterm delivery, birth order) and exposures during pregnancy (e.g. maternal: smoking, working, dietary supplement intake) in relation to risk of brain tumour diagnosis among 7-19 year olds. The multinational case-control study in Denmark, Sweden, Norway and Switzerland (CEFALO) included interviews with 352 (participation rate=83.2%) eligible cases and 646 (71.1%) population-based controls. Interview data were complemented with data from birth registries and validated by assessing agreement (Cohen's Kappa). We used conditional logistic regression models matched on age, sex and geographical region (adjusted for maternal age and parental education) to explore associations between birth factors and childhood brain tumour risk. Agreement between interview and birth registry data ranged from moderate (Kappa=0.54; worked during pregnancy) to almost perfect (Kappa=0.98; birth weight). Neither anthropogenic factors nor birth characteristics were associated with childhood brain tumour risk. Maternal vitamin intake during pregnancy was indicative of a protective effect (OR 0.75, 95%-CI: 0.56-1.01). No association was seen for maternal smoking during pregnancy or working during pregnancy. We found little evidence that the considered birth factors were related to brain tumour risk among children and adolescents.
Resumo:
In most pathology laboratories worldwide, formalin-fixed paraffin embedded (FFPE) samples are the only tissue specimens available for routine diagnostics. Although commercial kits for diagnostic molecular pathology testing are becoming available, most of the current diagnostic tests are laboratory-based assays. Thus, there is a need for standardized procedures in molecular pathology, starting from the extraction of nucleic acids. To evaluate the current methods for extracting nucleic acids from FFPE tissues, 13 European laboratories, participating to the European FP6 program IMPACTS (www.impactsnetwork.eu), isolated nucleic acids from four diagnostic FFPE tissues using their routine methods, followed by quality assessment. The DNA-extraction protocols ranged from homemade protocols to commercial kits. Except for one homemade protocol, the majority gave comparable results in terms of the quality of the extracted DNA measured by the ability to amplify differently sized control gene fragments by PCR. For array-applications or tests that require an accurately determined DNA-input, we recommend using silica based adsorption columns for DNA recovery. For RNA extractions, the best results were obtained using chromatography column based commercial kits, which resulted in the highest quantity and best assayable RNA. Quality testing using RT-PCR gave successful amplification of 200 bp-250 bp PCR products from most tested tissues. Modifications of the proteinase-K digestion time led to better results, even when commercial kits were applied. The results of the study emphasize the need for quality control of the nucleic acid extracts with standardised methods to prevent false negative results and to allow data comparison among different diagnostic laboratories.
Resumo:
The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.
Resumo:
The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land for Europe. The algorithm might also be applied to other parts of the world with similar surface characteristics like Europe, only the aerosol properties would have to be adapted to a new region. The initial approach used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a quasi-stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, the aerosol model, and other processing steps have been adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage, gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.
Resumo:
Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.